Nonhydrostatic Multi-scale Model (NMMB)

Z. Janjic, T. Black and R. Vasic

Climate high on the agenda of most meteorological centers

- Two major recent projects at NCEP
 - New version of Climate Forecasting System (CFS) released
 - Based on the spectral Global Forecasting System (GFS)
 - Officially adopted for climate studies in India
 - NOAA Environmental Modeling System (NEMS)
 - Grid point Nonhydrostatic Multi-scale Model (NMMB) fully implemented
 - Implementation of the spectral Global Forecasting System (GFS) nearing completion
 - Implementation of the NOAA/ESRL grid point global model FIM commenced
- NMMB adopted by SEEVCCC, link to NCEP modeling efforts established

- Further evolution of the WRF NMM
- Intended for wide range of spatial and temporal scales (from meso to global, and from weather to climate)
- Built on NWP and regional climate experience by relaxing hydrostatic approximation (Janjic et al., 2001, MWR; Janjic, 2003, MAP)

No over-specification

- The nonhydrostatic option as an add-on nonhydrostatic module
- Pressure based vertical coordinate

- Conservation of important properties of the continuous system aka "mimetic" approach in Comp. Math. (Arakawa 1966, 1972, ...; Jacobson 2001; Janjic 1977, ...; Sadourny, 1968, ...; Tripoli, 1992 ...)
 - Nonlinear energy cascade controlled through energy and enstrophy conservation
 - "Finite volume"
 - A number of first order and quadratic quantities conserved
 - A number of properties of differential operators preserved
 - Omega-alpha term, transformations between KE and PE
 - Errors associated with representation of orography minimized
 - Mass conserving positive definite monotone Eulerian tracer advection

- Coordinate system and grid
 - Global lat-lon
 - Regional rotated lat-lon, more uniform grid size
 - Arakawa B grid (instead of the WRF-NMM E grid)

h		h		h
	V		V	
h		h		h
	V		V	
h		h		h

- Pressure-sigma hybrid (Simmons and Burridge 1981)
- Lorenz vertical grid

- Regional domain lateral boundaries
 - Narrow zone with upstream advection zone, no computational outflow BC
 - Narrow linear blending zone (5 rows best)
- Conservative global polar boundary conditions
- Polar filter configuration
 - Decelerator," tendencies of T, u, v, Eulerian tracers, divergence, dw/dt, deformation
 - Waves in the zonal direction faster than waves with the same wavelength in the latitudinal direction slowed down
 - Physics not filtered

Time stepping

- No splitting
- Adams-Bashforth for horizontal advection of u, v, T and Coriolis force
- Crank-Nicholson for vertical advection of u, v, T (implicit)
- Forward-Backward (Ames, 1968; Janjic 1979, Beitrage) fast waves
- Implicit for vertically propagating sound waves (Janjic et al., 2001, MWR; Janjic, 2003, MAP)

- Upgraded NCEP WRF NMM "standard" physical package
 - RRTM, GFDL radiation
 - NOAH, LISS land surface model
 - Mellor-Yamada-Janjic turbulence
 - Ferrier microphysics
 - Betts-Miller-Janjic convection
- GFS physics recently added

2D very high resolution tests

Mean Scores (15 days): Convective Initiation, Evolution, and Mode

2004

NCEP

Fig. 5. Mean subjective verification ratings for the operational Eta model and the 3 high-resolution configurations of the WRF model, for categories of convective initiation, evolution, and mode, for the 15 days when all 4 models were available

17.1 EXAMINATION OF SEVERAL DIFFERENT VERSIONS OF THE WRF MODEL FOR THE PREDICTION OF SEVERE CONVECTIVE WEATHER: THE SPC/NSSL SPRING PROGRAM 2004

Steven J. Weiss*,1, J. S. Kain2, J. J. Levit1, M. E. Baldwin2, and D. R. Bright1

¹NOAA/NWS/Storm Prediction Center ²University of Oklahoma/CIMMS/National Severe Storms Laboratory

22nd Conference on Severe Local Storms, October 3-8, 2004, Hyannis, MA.

Global Scales

- One year of parallel global forecasts, October 26, 2009-October, 25 2010
 - Initialized from spectral GFS analyses
 - Compatibility issues between grid-point and spectral data (Gibbs phenomenon)
 - Verified against GFS analyses and climatology
 - 500 hPa Height Anomaly Correlation Coefficients
 - Although starting from "same" initial conditions, skill of NMMB and GFS forecasts often disparate
 - Potential advantage, global NMMB considered for global ensemble forecasting

TRO

Meso Scales

- Regional NMMB to replace WRF NMM in the NAM slot in 2011
- Hierarchy of nests running simultaneously, 12 km, 6 km, 4 km, 1.33 km (fire weather on the fly) resolutions

4 km NMM-B CONUS Nest – 36 h Fcst

RMS Temperature Error

SREF Upgrades

SREF

- Eliminate 6 Eta and 5 RSM members
- Add 7 NMMB, 2 WRF-ARW and 2 WRF-NMM members
- Update WRF code versions
- Increase horizontal resolution to 22 km
- Bias correct precipitation

- Shallow cloud topped marine PBL common problem in numerical models
 - Shallow convection parameterization unable to break low level cloudiness
 - Example from nested NMMB model:

- Modify the PBL scheme to take into account potential instability?
- Mellor-Yamada-Janjic (MYJ)
 - Heisenberg & Kolmogorov
 - Exchange coefficients, dissipation
 - Mellor and Yamada (1982) Level 2.5 model
 - Proportionality factors
 - Empirical "constants"
 - Does not work in case of growing convective turbulence (Helfand and Labraga, 1988; Janjic, 1996, 2001)
 - Janjic (1996, 2001):
 - Realizability condition for growing convective turbulence
 - Constraints on diagnostically computed master length scale
 - New empirical "constants"
 - Numerical algorithm for solving TKE equation

Modify buoyancy production term in TKE Eq.

- If:
 - LCL within the layer
 - Stable stratification
 - Potential instability
 - Enough TKE

$$P_b = -\beta g K_H \left(\frac{\partial \Theta_v}{\partial z} + \frac{\partial \Theta_e}{\partial z} \right)$$

NCEP I INTERIOR

Zavisa Janjic

◀ 24 ▶

No modification

3. 5.2010. 0 UTC + 00036 Acummulated Precipitation

 minum=_980E+03 maximum=_1032E+04 interval=_400E+01

Modified

3. 5.2010. 0 UTC + 00036

Acummulated Precipitation

minimum= .9800E+03 maximum= .1032E+04 interval= .4000E+01

24-hour accumulated precipitation

Acts in right direction

- No convergence of parameterization schemes with resolution (e.g. Arakawa et al. 2011)
- Conceptual problem with mass flux convection schemes, fractional convective cloud coverage tends to unity as resolution increases, no "environment"
- Betts-Miller-Janjic (BMJ) deep convection
 - Betts (1986), Betts & Miller (1986) temperature profiles
 - Janjic (1994)
 - Regime dependent moisture profiles and relaxation time
 - With assumed "minimum microphysics", moist adiabat asymptote
 - No convergence issues

- Tests with "convection allowing" 4km resolution
 - Much better QPF bias
 - Preserved precipitation timing
 - Preserved fine structure
 - Improved surface and upper-air scores

60-H APCP NAMX 60H FCST VALID 12Z 26 NOV 2010

60-H APCP CONUS4KM 60H FCST VALID 12Z 26 NOV 2010

60-H CAPCP CONUS4KM 60H FCST VALID 12Z 26 NOV 2010

2

0.01 0.1 0.25 0.5 0.75 1 1.5

Zavisa Janjic

NAM NAMB NAMX, CONUSNESTX 3hr Precipitation

00Z cycles

12Z cycles

(CONUSNESTX forecast goes to 60h; the other models go to 84h)

Granular Structure Preserved (loop)

Summary and Conclusions

- Global NMMB shows good results in medium range forecasting
- Global NMMB promising as a global ensemble member
- Operational implementation of the regional NMMB at NCEP in the NAM slot and for nested runs planned for later this year
- Extended MYJ turbulence scheme promising in handling shallow cloud topped marine BLs
- BMJ promising at single digit, "convection allowing" resolutions
- NMMB satisfies requirements for regional climate research set up by SEEVCCC

