# Earth Symulation System: General Considerations

#### Zavisa Janjic NOAA/NWS/NCEP



Zavisa Janjic

] 1 |





Dr Louis Uccellini, the director of the National Centers for Environmental Prediction, could not come. He sends his greetings and best wishes for the success of the meeting.







#### **Basics**

- Earth simulation system as a tool for
  - Regional climate studies
  - Downscaling
  - Seasonal forecasting
- Requirements
- Outstanding issues





#### Basics

- Earth simulation system
  - Driving atmospheric model
  - Modeling subsystems
- Sufficient computing power
- Validation data and procedures
- Sufficient person-power
- Stable long term funding



4

# **Driving Atmospheric Model**

- Spatial scales?
- How regional is regional climate?
  - Mountain valley contrasts
  - Urban rural area contrasts
  - Maritime continental area contrasts

۰...

Multiple scales, from meso to global



5 🕨

# **Driving Atmospheric Model**

#### Dynamics

- Nonhydrostatic (on the small scale end)
- Global (on the large scale end)
- Suitable for extended integrations
  - Quadratic conservative
  - Sufficiently accurate conservative, positive definite and monotone tracer transport
  - Minimum non-physical dissipation
- Computationally efficient, scalable





#### **Communication between scales**

- Communication between large scale and regional models for driving nested models and downscaling
  - Can all the necessary information be passed through lateral boundary conditions?
  - Scale dependent nudging?
  - Impact of the size of nested domain?





# Driving atmospheric model

#### Physics

#### Converging with resolution

- Radiation formulation capable of interacting with particulate and gaseous aerosols
- Processes at the lower boundary

#### Turbulence

- Moist processes (grid scale and convection) capable of interacting with aerosols and radiation
- Computationally efficient, scalable





# **Driving Atmospheric Model**

- Example of convergence problem with mass flux moist convection schemes (Arakawa et al. 2011)
  - Small fractional grid box cloudiness coverage assumed
  - At high resolutions entire grid box covered by clouds
  - No "environment" left
  - Conventional mass flux scheme concepts (plume, updrafts, downdrafts, entrainment, detrainment etc.) do not work any more
  - No convergence of large scale mass flux schemes!





# **Driving Atmospheric Model**

#### Arakawa et al. 2011:



Fig. 3. Schematic illustration of typical vertical profiles of moist static energy source under disturbed tropical conditions.



Zavisa Janjic



# Driving atmospheric model

- Example of convergence problem with "nonlocal" PBL schemes
  - Adjustment schemes for convective BLs based on observations and LES, very popular
  - Attempt to take into account vertical transports by large eddies
  - At high resolutions model dynamics start resolving large eddies
  - Fundamental assumption not valid any more!





# Modeling subsystems

#### Aerosols

- Atmospheric chemistry
- Land surface and soil
- Land hydrology
  - Surface
  - Subsurface
- Ocean







# Modeling subsystems: Aerosols

- Sources
- Uptake mechanisms
- Atmospheric transport
- Interactions
  - Radiation
  - Microphysics
- Deposition
  - Dry, gravity, turbulence
  - Wet, grid scale precipitation, convection





# Modeling subsystems: Land surface and soil

- Atmosphere exchanges energy through surface
- Are SVAT models with "sandwich" canopy adequate?
- Snow, age, density, heat conduction
- Urban canopy representation?
- Numerical methods for non-stationary, transitional regimes





```
qflxbfr=-akhs*(q(lmhk)-qz0)*elwv
     call vdifh
    & (lmhk, dtphys, thz0, qz0, akhs, ct, the, q, c, akh, z)
         do l=1,lmhk
     cl=c(l)
     t(1) = elocp*cl+(the(1)/ape(1))
         enddo
     qflxaft=-akhs*(q(lmhk)-qz0)*elwv
     dqflx=qflxaft-qflxbfr
     sumdq=dqflx+sumdq
     if (abs (qflxbfr).gt.1.e-2) then
       rel=dqflx/qflxbfr
     else
       rel=dqflx/qflxaft
     endif
     write(10,2000) kt,qflxbfr,qflxaft,dqflx,rel,sumdq
2000 format(' ',i4,5e14.5)
```







Qsfc BC



Zavisa Janjic





#### LH flux BC

Zavisa Janjic





# Modeling subsystems: Land Hydrology

Horizontal movement of subsurface water often ignored

- Do we know enough about it?
- Scale dependancy? Can it be ignored on some scales and not on others
- High resolution surface hydrology
  - Statistical models
  - Dynamical models, SEVCC already pioneering (Nickovic et al. 2010; Pejanovic et al. 2011)
  - Ignore surface runoff?





# Modeling subsystems: Ocean

- Significant feedback between atmosphere and ocean
  - Is ocean climatology sufficient?
  - Is a surface water slab sufficient?
  - Full ocean model?
    - Is a coupled full ocean model affordable?
    - Is a data assimilation system needed to prevent the ocean model from drifting away from climatology?







Center Fixes from NHC Tropical Cyclone Advisories



#### SST (a) before and (b) after Katrina (Sun et al. 2006)



Zavisa Janjic

21



#### Modeling subsystems: Ocean

# Ocean Ice (not much sea ice in SE Europe) Climatology, prescribed properties? Fully interacting ocean ice model?







Modeling subsystems: Atmospheric Chemistry

- Very expensive
- Chemically inert strongly interacting species (CO<sub>2</sub>)
- Minimum # of chemically active strongly interacting species (ozone)







#### **Computing resources**

#### No upper limit!

- Lower limit, to start with
  - Based on time scales, 10<sup>-2</sup> to 10<sup>-1</sup> of what is available at major climate centers







#### Conclusions

Good start

# Wide range of issues to be addressed, lot of work to be done

Good luck!











Zavisa Janjic

