Predictability of scales

what NWP can tell us for climate downscaling

can we really downscale climate usefully and to which resolution?
Does a scale have prognostic, diagnostic (climatological) or no value?

What happens if we just do a downscaled climate based on shortrange NWP forecasts
(the day two forecast timeseries)

Mathias D. Muller
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mathias.mueller@unibas.ch



Why should we downscale Climate?
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Climate change is global but its
effects impact us on local and
regional scales

Different scales of integration in
time and space depending on
activity and climate variable.

Hydropower from
snowmelt vs. small farm
agriculture

Extreme event statistics
(Wind, Temp, Precipitation)

Does the downscaled result have any skill required for planning?



Topography scale is often larger

+/- 300-500m
Height Difference

max_diff = 756.706
nc nC4_1 Ooom min_diff = —635.911




Scale discrepancies due to numerical schemes

Semi-Lagrangian Advection

Usually a timestep 5-6 times larger than for other advection schemes is used due to its
stability and formal independence of the CFL criteria.

However the solution has to be smooth on the scales of the trajectory, which can be 5-6
dx long (->Jetstream).

Cross-section of u
at 3 km resolution




Scale discrepancies due to numerical schemes

Semi-Lagrangian Advection
Usually a timestep 5-6 times larger than for other advection schemes is used due to its

stability and formal independence of the CFL criteria.

However the solution has to be smooth on the scales of the trajectory, which can be 5-6
dx long (->Jetstream).

Higher order schemes for spatial derivatives

For mathematical functions (smooth in character) the higher order schemes clearly show
a better accuracy. However at high resolutions the meteorological field can

look very noisy and unsteady. A higher order scheme than smooths the real data.

[

" Cross-section of u

N .~ at 3 km resolution

U(ms-1)




Scale discrepancies due to nhumerical schemes
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Diffusion (explicit or implicit by
numerical scheme)

Eg. visible in correlations between vertical Levels.

High correlations between different levels indicate
statistically significant the presence of an
unstructured smooth vertical profile in the PBL.

Semi-Lagrangian Advection

Usually a timestep 5-6 times larger than for other
advection schemes is used due to its stability and formal
independence of the CFL criteria.

However the solution has to be smooth on the scales of
the trajectory, which can be 5-6 dx long (->Jetstream).



Predictability of Temperature and Wind

1 year of 1h/3h observations at 1150 stations

MOS, Kalman Filtering and raw model output at 40,12 and 3 km resolution



Predictability of Temperature at different scales

Absolute Error (K)
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3 and 12 km are equal



Predictability of Temperature at different scales

Number of Events (%)
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Predictability of Wind at different scales

Yearly statistics for every station
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Slightly larger influence of
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Predictability of Wind at different scales

Number of Events (%)

Events with Absolute Error < 1 m/s

Events with Absolute Error < 1.5 m/s
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Predictability of Dewpoint at different scales

Dewpoint Temperature

Yearly statistics for every station
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24h acc. Precipitation - (1.3.2007-31.5.2007)

Is high resolution necessary?

operational NMM 12 km
(meteoblue)

25 to 48 hours forecast

operational NMM 3 km
(meteoblue)

High resolution still has
Realistic amounts !!!!




24h acc. Precipitation - (1.6.2007-31.8.2007)

Is high resolution necessary?

operational NMM 12 km
(meteoblue)

25 to 48 hours forecast

operational NMM 3 km
(meteoblue)

High resolution still has
Realistic amounts !!!!




gional)

Uncertainties visible in accumulation (re

Uncertainty can be on the 100 km scal

Accumulation:

e in simpler terrain 1 mar- 1 sep 2007



24h acc. Precipitation - (1.3.2007-31.8.2007)

12 km operational NMM WMO stations, accumulated precipitation
forecast hour 48-71 Cressman interpolation
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Precipitation in complex topography - Switzerland

event based verifications (rain event within 24 hours)
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Precipitation in complex topography - Switzerland

event based verifications (rain event within a single hour)
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The high resolution has
almost double Skill!
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Mean «low>» cloud cover

1 Dec 2010 — 1 March 2011 at 07:00 LST

1S & CLOUD COVER 1 Der 2010 = 1 March 2011 {12km,

Tendency to slightly more cloud cover at coarser resolution, especially in complex terrain



Mean «low>» cloud cover

1 Dec 2010 — 1 March 2011 at 16:00 LST

15:00 U MEAH CLOUD COVER 1 Der 2010 = 1 March 2011 {12km

Tendency to sligthly more cloud cover at coarser resolution, especially in complex terrain



Can we downscale to get extreme event statistics?

Climate downscaling with NWP could predict extreme events and thus the PDF
- or maybe not!
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Can we downscale extreme event statistics ?
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Wind and Temperature - 10 Oct 2005

Requires high
Resolution (1 km)! |
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Some processes are very sensitive to resolution
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Can statistics compensate for the lack
In resolution?

As with the height dependence of precipitation




Putting it all together...

Post processing is a very effective and cheap way for some variables (Wind, Temp, Dewpoint)
if observations exist. (more effective than increasing the resolution)

These variables seem to have a predictive skill of around 10 km

Resolution has the largest impact on clouds and precipitation on an event basis (hourly)
-> i am not aware of a useful postprocessing

On a 24h event basis the hihger resolution is pretty useless, which is also true for climatological
precipitation amounts. -> statistical downscaling possible
For precipitation the high resolution can be very dangerous in a climatological sense

Predicting extreme events will require very high resolution (especially for precipitation) but
a strong dependency on microphysics and convective parameterizations exists.

Low stratus clouds are often missing in forecasts



For the future...

Modeling:

NWP physics used for climate studies have to be carefully evaluated in NWP
climatologies on the 12-36h horizon, especially at high resolution.

Ensembles at lower resolution rather than few high resolution forecasts?
In combination with statistical postprocessing.

Communicate predictive skill of downscaling. (it might look better than it is!)

Observations:

Close the data void with more observations.

relatively low level equipment is good enough for downscaling purposes. (Statistical
postprocessing and extreme events)

Integration of non-WMO networks in a climate database. (offering infrastructure or
funding)

Easier access to already available observations (at hourly resolution!)







Accessing downscaled climate locally!

If climate is downscaled to the local scale it should be «experienced» at the local scale

- Weather for (city, postcode, coordinates) r Favorites:
|Iundun | | United Kingdom (] |Please choose ||
anns only Exact Match Save place

Iﬂndﬂn 42 locations found. Click on desired Place name to see the forecast
3 Hide results 3> Legend

Place name Region/District m asl Lat. Lon. T
@ flondon] — Engand 10 5150° 012 «
@ [ london ] 35 5152° -0.10°
A london Basin England 25 51507 -0.A0°
@@ london Borough of Barking and Dagenham England 7 5155 p12°
@ london Borough of Barnet England 49 51607 -0.25°
@@ london Borough of Bexley England 37 5142° 013°
@@ london Borough of Brent England 35 51563° 027
@@ london Borough of Bromley England 149 5133° 0.08°
@ london Borough of Camden England 46 51.53° -017°
@ london Borough of Croydon England 151 51.33° -0.08°
@@ london Borough of Ealing England 19 51.50° —U.BB“KE

[11-2-3-4- Next>

Keep the key information of climate simulations in an online storage for realtime local queries.
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Single points
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