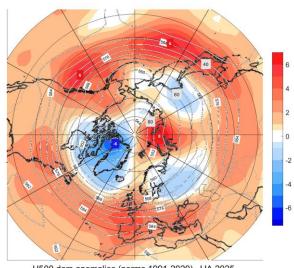


North EurAsia Climate Centre


The main features of large-scale atmospheric circulation in the Northern Hemisphere for the summer 2025

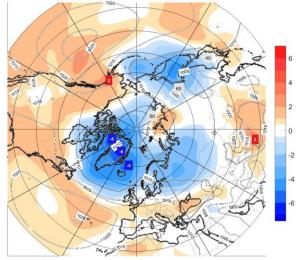
34th session of the South East European Climate Outlook Forum (SEECOF-34)
Step1
23 October 2025

Sumerova K.A., Tishchenko V.A., Khan V.M. email for contact: sum-ksusha@yandex.ru

Atmospheric circulation

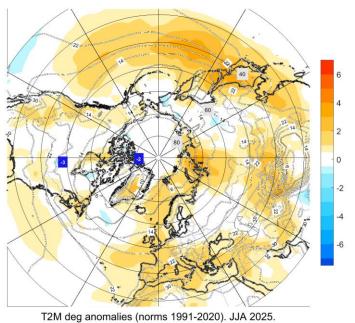
H500 dam anomalies (norms 1991-2020). JJA 2025.

During the summer season, intraseasonal variability was observed in the mid-tropospheric circulation processes at the 500 hPa level:


- •On average for the season, the polar vortex was centered over the pole, with a slight displacement towards Baffin Bay (8 dam). It was somewhat deformed by intense anticyclonic activity.
- •The troughs associated with cyclones remained deep but became deformed, with the exception of the Aleutian cyclone trough.
- •The area of negative anomalies over the European part of Russia (EPR) was associated with a polar vortex trough that extended over this region for almost the entire season, albeit with a slight eastward shift.
- •An elevated geopotential height field in the mid-troposphere over Europe and western North America indicated the presence of persistent ridges and anticyclones.
- •In Europe, these were most intense in June (with anomalies of up to +10 dam).
- •Over North America, they were nearly persistent.
- •Over the Pacific Ocean, the position of the somewhat weakened Aleutian trough of the polar vortex was close to the norm.
- •Positive geopotential height anomalies prevailed in subtropical latitudes.

Atmospheric circulation

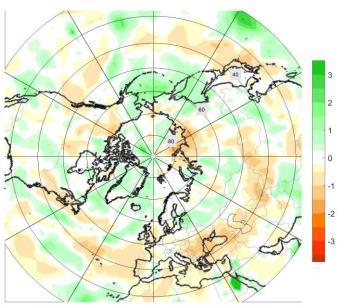
•In the Atlantic Ocean, both centers of atmospheric action were well-defined.


- The center of the deep and extensive Icelandic Low was located over Greenland, with two primary cores: one over Greenland and Baffin Bay (-6 hPa), and another over the Norwegian Sea (-5 hPa).
- The Azores High was extensive and intense, with its center situated near the Azores Islands.
- •Surface pressure was above normal over most of Europe.
 - However, negative surface pressure anomalies were observed over Scandinavia, northeastern Europe, the European part of Russia (except the south), the Urals, and western Siberia.
- •The southern regions of the European part of Russia were predominantly under the influence of anticyclones.
 - These were primarily ridges extending from the Azores High. The only significant exception was in July, when cyclones from Europe penetrated into the region.
- In Central Asia, the northern regions were dominated by cyclones, while the southern parts were under the influence of anticyclones from the south.

MSLP hPa anomalies (norms 1991-2020). JJA 2025.

Temperature

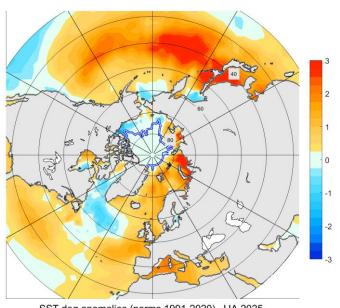
Territory	Positive anomaly	Negative anomaly	
Europe	except for the northeast	-	
Russia	the south and northeast of the European part of Russia, most of Siberia, the south of Khabarovsk Krai, Primorsky Krai, and the Kamchatka Peninsula.	Foci of weak negative anomalies were recorded in the eastern part of the Chukotka Peninsula and in central Yakutia.	
Central Asia	the south	-	


Seasonal temperature 2m anomalies

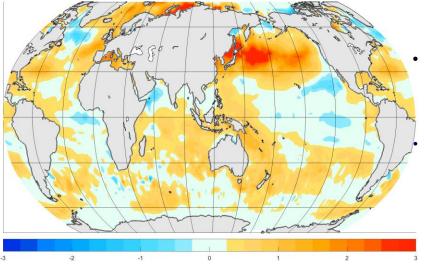
(ERA5 reanalysis, based on a 1991-2020 mean)

Territory	Temperature,	Rank		Anomaly
	°C	Current year	Warmest	
Northern Hemisphere	23,5	3	2024	0,5
Arctic	5,3	8-10	2020	0,5
Europe	21,1	3	2024	1,2
Russia	16,2	6-8	2024, 2021,2016	0,7
EPR	18,2	20	2010	0,4
APR	15,7	2-5	2023	0,7

Precipitation

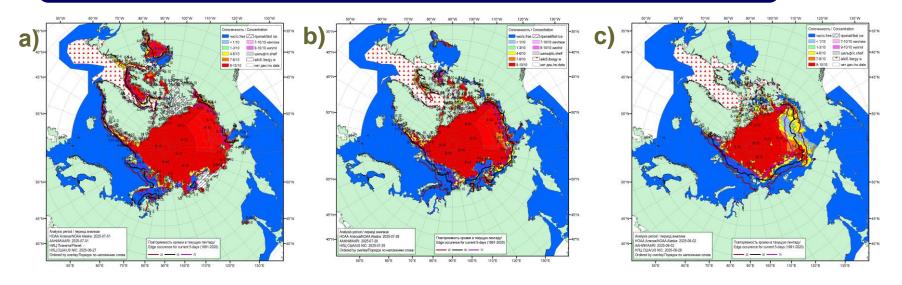

PREC sigma anomalies (norms 1991-2020). JJA 2025.

Precipitation anomalies (ERA5 reanalysis, based on a 1991-2020 mean)


- Precipitation across most of Europe was near normal. A
 deficit was observed in the western Iberian Peninsula, western
 France, the British Isles, and southeastern Europe;
- Within the European part of Russia, summer precipitation
 was below normal in the far south, while the central part of the
 region received above-normal amounts;
- In Central Asian countries, surplus precipitation was observed locally in northern Kazakhstan, while a deficit occurred in southern Kazakhstan, Uzbekistan, Turkmenistan, Tajikistan, and Kyrgyzstan.

SST in Northern Hemisphere

SST deg anomalies (norms 1991-2020). JJA 2025.



SST:

- Seasonally averaged sea surface temperature (SST) anomalies were positive over most of the North Pacific **Ocean.** The largest anomalies (exceeding 2-3°C) were observed in the western part of the ocean. Negative SST anomalies were recorded in the northern Bering Sea, the northern Sea of Okhotsk, and in the eastern Pacific Ocean near the Baja California Peninsula.
- In the Atlantic Ocean, the positive SST anomalies were less pronounced than in the Pacific. An area of negative anomalies was observed in the northern part of the basin: south of Greenland, in the Davis Strait, and in Baffin Bay.
- **Elevated SSTs were also observed in the Russian Arctic** seas during the summer, reaching 3-4 degrees in the Kara Sea.
- According to the Climate Prediction Center (CPC) of NOAA, a neutral El Niño phase was observed during the summer of 2025.

Sea ice extent in the Arctic region

Ice edge and areas of rarefied (<8/10) and cohesive (≥8/10) ice in the Arctic Ocean on a) 27.06.-01.07.25 г.; b) 25-29.07.25 г.; c) 28.08.-02.09.25 г. based on the ice analysis of the US NIC, and edge repeatability from 21-25.04 for the period 1979-2017 according to SSMR-SSM/I-SSMIS observations (NASATEAM algorithm).

- Throughout the season, low ice cover was observed in the Barents and Kara Seas, as well as in Hudson Bay and Baffin Bay;
- In the East Siberian Sea and Laptev Sea, the rate of ice loss in July and August exceeded the average;
- On September 10, 2025, the Arctic sea ice reached its annual minimum extent of 4.60 million square kilometers. The date of the ice cover minimum this year was four days earlier than the 1981-2010 average date of September 14. The 2025 Arctic ice minimum ranks as the 10th lowest in the satellite record dating back to 1979.

Thank you \odot

https://seakc.meteoinfo.ru/en/