7.4.8 Probability Forecasts for Multiple-Category Events

Probability forecasts may be formulated for discrete events having more than two (yes
vs. no} possible outcomes. These events may be nominal, for which there is not a natural
ordering; or ordinal, where it is clear which of the outcomes are larger or smaller than
others. The approaches to verification of probability forecasts for nominal and ordinal
predictands differ, because the magnitude of the forecast error is not a meaningful quantity
in the case of nominal events, but is potentially quite important for ordinal events. The
usual approach to verifying forecasts for nominal predictands is to collapse them to a
sequence of binary predictands. Having done this, Brier scores, reliability diagrams, and
so on, can be used to evaluate each of the derived binary forecasting situations.

Verification of probability forecasts for multicategory ordinal predictands presents a
more difficult problem. First, the dimensionality of the verification problem increases
exponentially with the number of outcomes over which the forecast probability is dis-
tributed. For example, consider a J = 3-event situation for which the forecast probabilities
are constrained to be one of the 11 values 0.0,0.1,0.2, .. ., 1.0. The dimensionality of the
problem is not simply 33 — 1 = 32, as might be expected by extension of the dimensional-
ity for the dichotomous forecast problem, because the forecasts are now vector quantities.
For example, the forecast vector (0.2, 0.3, 0.5) is a different and distinct forecast from the
vector (0.3, 0.2, 0.5). Since the three forecast probabilities must sum to 1.0, only two of
them can vary freely. In this situation there are / = 66 possible three-dimensional forecast
vectors, yielding a dimensionality for the forecast problem of (66 x 3) — 1 = 197, Simi-
larly, the dimensionality for the four-category ordinal verification situation with the same
restriction on the forecast probabilities would be (286 x 4)— 1 = 1143, As a practical
matter, because of their high dimensionality, probability forecasts for ordinal predictands
primarily have been evaluated uwsing scalar performance measures, even though such
approaches will necessarily be incomplete.

For ordinal predictands, collapsing the verification problem to a series of [ x 2 tables
will result in the loss of potentially important information related to the ordering of the
outcomes. For example, the probability forecasts for precipitation shown in Figure 6.33
distribute probability among three MECE outcomes: dry. near-normal, and wet. If we
were to verify the dry events in distinction to not dry events composed of both the
near-normal and wet categories, information pertaining to the magnitudes of the forecast
errors would be thrown away. That is, the same error magnitude would be assigned to
the difference between dry and wet as to the difference between dry and near-normal.

Verification that is sensitive to distance usually is preferred for probability forecasts
of ordinal predictands. That is. the verification should be capable of penalizing forecasts
increasingly as more probability is assigned to event categories further removed from
the actual outcome. In addition. we would like the verification measure to be strictly
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proper (see Section 7.4.7), so that forecasters are encouraged to report their true beliefs.
The most commonly vsed such measure is the ranked probability score (RPS) (Epstein
1969b; Murphy 1971). Many strictly proper scalar scores that are sensitive to distance
exist (Murphy and Daan 1985: 5tagl von Holstein and Murphy 1978). but of these the
ranked probability score usually is preferred (Daan 1985).

The ranked probability score is essentially an extension of the Brier score (Equa-
tion 7.34) to the many-event situation. That is, it is a squared-error score with respect to
the observation | if the forecast event occurs, and 0 if the event does not occur. How-
ever, in order for the score to be sensitive to distance, the squared errors are computed
with respect to the cumulative probabilities in the forecast and observation vectors. This
characteristic introduces some notational complications.

As before, let J be the number of event categories, and therefore also the number
of probabilities included in each forecast. For example, the precipitation forecasts in
Figure 6.33 have J = 3 events over which to distribute probability. If the forecast is
20% chance of dry, 40% chance of near-normal, and 40% chance of wet; then v, =10.2,
¥; =04, and y; = 0.4. Each of these components y; pertains to one of the J events being
forecast. That is, v, v;, and y;, are the three components of a forecast vector y, and if
all probabilities were to be rounded to tenths this forecast vector would be one of [ = 66
possible forecasts y,.

Similarly, the observation vector has three components. One of these components,
corresponding to the event that occurs, will equal 1, and the other J — | components will
equal zero. In the case of Figure 633, if the observed precipitation outcome is in the wet
category, then o = 0,0, =10, and o; = 1.

The cumulative forecasts and observations, denoted ¥, and €, are defined as func-
tions of the components of the forecast vector and observation vector, respectively,
according to

Yo=2y., m=1....% (7.46a)
and

0,=Y0. m=1..., 1. (7.46b)

In terms of the foregoing hypothetical example, ¥, =%, =02, ¥, = v, + v, = 0.6, and
K=w+wt+y= 1.0; and = =C|,f32 =y +01=U', and =0 +o+o= .
Motice that since ¥_ and (3 are both cumulative functions of probability components
that must add to one, the final sums ¥; and ¢y are always both equal to one by definition.

The ranked probability score is the sum of squared differences between the components
of the cumulative forecast and observation vectors in Equation 7.46a and 7.46b, given by

1
RPS = %"(Y,—0,_)". (7.47a)

m=|

or. in terms of the forecast and observed vector components ¥, and o;.

RPS:E Kijyj)—(guj)r (7.47h)



FPROBABILITY FORECASTS OF DISCRETE PREDICTANDS 301

A perfect forecast would assign all the probability to the single ¥, comesponding to the
event that subsequently occurs, so that the forecast and observation vectors would be the
same. In this case, RPS = (. Forecasts that are less than perfect receive scores that are
positive numbers, so the RPS has a negative orientation. Notice also that the final (m =)
term in Equation 7.47 is always zero, because the accumulations in Equations 7.46 ensure
that ¥, = (3, = 1. Therefore, the worst possible score is J — 1. For J =2, the ranked
probability score reduces to the Brier score, Equation 7.34. Note that since the last term,
for m = J, is always zero, in practice it need not actually be computed.

EXAMPLE 7.7 IMustration of the Mechanics of the Ranked Probability Score

Table 7.6 demonstrates the mechanics of computing the RPS, and illustrates the property
of sensitivity to distance. for two hypothetical probability forecasts for precipitation
amounts. Here the continuum of precipitation has been divided into J =3 categories,
= 0.01 in.. 0.01 —0.24 in.. and =0.25 in. Forecaster | has assigned the probabilities (0.2,
0.5, 0.3) to the three events, and Forecaster 2 has assigned the probabilites (0.2, 0.3, 0.5).
The two forecasts are similar, except that Forecaster 2 has allocated more probability
to the =0.25 in. category at the expense of the middle category. If no precipitation
falls on this occasion the observation vector will be that indicated in the table. For
most purposes, Forecaster | should receive a better score, because this forecaster has
assigned more probability closer to the observed category than did Forecaster 2. The
score for Forecaster 1 is RPS = (0.2—1)2+(0.7—1)* =0.73, and for Forecaster 2 it is
RPS = (0.2— 1) +(0.5— 1)* = 0.89. The lower RPS for Forecaster | indicates a more
accurate forecast.

If. on the other hand, some amount of precipitation larger than 0.25 in. had fallen,
Forecaster 2°s probabilities would have been closer, and would have received the better
score. The score for Forecaster 1 would have been RPS = (0.2 —0)* + (0.7 — 0)* = 0.53,
and the score for Forecaster 2 would have been RPS = (0.2 —0)* +(0.5—0)" = 0.29.
Mote that in both of these examples, only the first J/ — | =2 terms in Equation 7.47 were
needed to compute the RPS. §

Equation 7.47 yields the ranked probability score for a single forecast-event pair.
Jointly evaluating a collection of a forecasts using the ranked probability score requires
nothing more than averaging the RPS values for each forecast-event pair,

I n
<RPS==— Y RPS,. (7.48)
n k=]

TABLE 7.6 Comparison of two hypothetical probability forecasts for precipitation amount, divided
inte J = 3 categories. The three components of the observation vector indicate that the ohserved
precipitation was in the smallest catepgory.

Forecaster | Forecaster 2 Observed
Event ¥ Yo ¥ . & .
< .01 in. 02 0.2 02 0z | |
0.01 —0.24 in. 1 0.7 03 05 0 |
=025 in. n3 | .0 03 1.0 0 |




Similarly, the skill score for a collection of RPS values relative to the RPS computed
from the climatological probabilities can be computed as

<RPS> — <RPSq > I <RPS=

SSpps = =1- :
s 0— <RPSg;,> <RPSg >

(7.49)



