Introduction to the Climate Predictability Tool

Simon J. Mason

simon@iri.columbia.edu

International Research Institute for Climate and Society The Earth Institute of Columbia University

The Fourth Session of Southeastern Europe Climate Outlook Forum (SEECOF-4)

Belgrade, Serbia, 22 – 26 November 2010

Seasonal Forecast Formats

Why the Limited Use of Forecasts?

Gaps in Data

- Insufficient observations, and poor quality
- Downscaling or "right-scaling"
 Gaps in Climate Services
- Poor skill, and insufficient lead-time
- Poor communication

Gaps in Practice

- Relevance of forecast
- Unclear what action to take

Gaps in Policy

• Institutional constraints to taking action

Widespread creation and communication of qualitycontrolled seasonal climate forecasts that address specific needs of different user groups.

To produce forecasts that people can and want to use!

What is CPT?

Climate Predictability Tool (CPT) is an easy-to-use software package for making tailored seasonal climate forecasts.

Versions:

• Windows 95+

- Batch
- Generic GUI version (under development)

DILBERT by Scott Adams

CPT Use

CPT downloads (circles) and known CPT courses (triangles) from 2003 to 2009

History of CPT

- CPT 0: MATLAB code for performing canonical correlation analysis (CCA).
- CPT1: (Dec 2002) translated into 650 Lines of Fortran 77 interfacing to LAPACK SVD routines
- CPT2: (Aug 2003) converted to Fortran 95; GUI; validation; new forecasts
- CPT3: (Feb 2004) mapping of station data; handling of missing values
- CPT4: (Feb 2005) improved graphics
- CPT5: (Aug 2005) forecast uncertainty; WMO SVSLRF verification; tailoring
- CPT 6: (Nov 2005) multiple users; exceedance probabilities
- CPT 7: (Aug 2006) data transformation; improved retroactive procedure
- CPT 8: (May 2007) retroactive forecast probabilities and verification; multiple regression
- CPT 9: (Mar 2008) DLLs; major internal restructuring
- CPT10 : (Oct 2009) multiple fields; extended EOFs; new interface; ensemble forecasts; new verification procedures; new input data formats
- CPT11 : (Nov 2010) multilingual interface; simplified input data formats; probabilistic verification scores

CPT – Statistical Forecasting Tool

Correlation between Philippines rainfall and global seasurface temperatures

Downscaling

- GCM gridpoint forecasts are area-averages, and may not produce information at a scale that is useful for practical applications.
- A typical GCM grid represents about a 60,000 km² area.

Annual mean observed and simulated precipitation over western North America.

CPT – Downscaling Tool

Important climate features may be displaced in GCMs relative to observations

Why CPT?

CPT was developed to address some problems in producing seasonal climate forecasts at a number of the RCOFs:

Slow production time - expensive pre-forum workshops expensive, and limited availability of monthly updates;

Artificial skill, and lack of vigorous performance evaluation;

Minimal consideration of global products.

Why Not Regression?

• Multiplicity - too many predictors

Why Not Regression?

• Multicoliearity – similar predictors

 $Nino3.4_{\rm Mar} = \beta_0 + 0.761 \times Nino3.4_{\rm Feb} + \varepsilon$

 $Nino3.4_{\rm Mar} = \beta_0 + 0.628 \times Nino3.4_{\rm Jan} + \varepsilon$

 $Nino3.4_{\text{Mar}} = \beta_0 + 1.216 \times Nino3.4_{\text{Feb}} - 0.395 \times Nino3.4_{\text{Jan}} + \varepsilon$

What is PCA?

First principal component of October – December 1950 -1999 sea-surface temperatures.

Why PCA?

When using principal components of sea-surface temperatures the components have desirable features:

- 1. They explain maximum amounts of variance, and therefore are representative of sea temperature variability over large areas;
- 2. They are uncorrelated, and so errors in estimating the regression parameters are minimized.
- 3. Only a few need be retained and so the dangers of fishing are minimized.

CCA

X Spatial Loadings (Mode1)

Y Spatial Loadings (Mode1)

Rainfall during DJF

Note : (1983;1998) and (1989;1999) were cases of strong associations but opposite. 1990 was year of weak or no association.

Degree of association between those two patterns from 1981 to 2008.

CCA

how the two patterns are actually associated

CCA : bias correction

Temporal Scores (Mode1)

The CCA shows a strong association between GCM rainfall (X) and observed rainfall (Y) with r=0.64 showing the GCM capability to capture inter-annual rainfall variability, *but* it misses the location of the rainfall in Kenya (spatial bias). If we looked at GCM rainfall in Kenya (targeted region) we would miss the signal.

Buell patterns

Imagine a rectangular domain in which all the points are strongly correlated with their neighbours.

Buell patterns

The points in the middle of the domain will have the strongest average correlations with all other points, simply because their average distance to all other grids is a minimum.

The strong correlations between neighbouring grids will be represented by PC 1, with the central grids dominating.

Buell patterns

The points in the corners of the domain will have the weakest average correlations with all other points, simply because their average distance to all other grids is a maximum.

The weak correlations between distant grids will be represented by PC 2. The direction of the dipole reflects the domain shape.

Buell patterns?

- PC1: positive loadings virtually everywhere, with strongest loadings in the centre
- PC2: positive loadings on one side and negative on the other

Are these real, or are they a function of the domain shape?

Buell Patterns in Extended EOFs

PC1: positive loadings virtually everywhere, with strongest loadings in the centre and in the central month

Scores and loadings for first principal component of July, August, September 1951 – 2000 sea-surface temperatures.

Buell Patterns in Station Data

With station data the problem can be even worse because of station clustering

Loadings for first principal component of Oct – Dec rainfall for 1961 – 2000 using station data.

Loadings for first principal component of Oct – Dec rainfall for 1961 – 2000 using gridded data.

Cross-Validation

Cross validation (without a hyphen) means angry validation.

Cross-validation (with a hyphen) is a method for estimating how well a model's predictions will be.

Cross-validation

Leave-one-out cross-validation

1951	Predict 1951	Training period					
1952	Training period	Predict 1952	ct Training Period				
1953	Training period		Predict 1953	Training period			
1954		Training period		Predict 1954	Training Period		
1955		Training period			Predict 1955	Training period	

... then correlate 1951–2000.

Leave-k-out cross-validation

1951	Predict	Omit	Omit	Training			
	1951	1952	1953	period			
1952	Omit 1951	Predict 1952	Omit 1953	Omit 1954	Training period		
1953	Omit	Omit	Predict	Omit	Omit	Training	
	1951	1952	1953	1954	1955	period	
1954	Training	Omit	Omit	Predict	Omit	Omit	Training
	period	1952	1953	1954	1955	1956	period
1955	Training		Omit	Omit	Predict	Omit	Omit
	period		1953	1954	1955	1956	1957

Retrospective forecasting

1981	Training period	Predict	Omit			
	(1951-1980)	1981	1982+			
1982	Training pe	Predict	Omit			
	(1951-198	1982	1983+			
1983	Training period			Predict	Omit	
	(1951-1982)			1983	1984+	
1984			Predict 1984	Omit 1985+		
1985		Predict 1985				

