User's Guide for the NCEP Unified Post Processor (UPP) Version 3

Table of Contents

NCEP Unified Post Processor (UPP)

- <u>UPP Introduction</u>
- UPP Required Software
- Obtaining the UPP Code
- UPP Directory Structure
- Installing the UPP Code
- UPP Functionalities
- <u>Setting up the WRF model to interface with UPP</u>
- <u>UPP Control File Overview</u>
 - o Controlling which variables unipost outputs
 - o <u>Controlling which levels unipost outputs</u>
- <u>Running UPP</u>
 - Overview of the scripts to run UPP
- Visualization with UPP
 - o **GEMPAK**
 - o <u>GrADS</u>
- Fields Produced by unipost

Acknowledgments:

The adaptation of the original WRF Post Processor package and User's Guide (by Mike Baldwin of NSSL/CIMMS and Hui-Ya Chuang of NCEP/EMC) was done by Lígia Bernardet (NOAA/ESRL/DTC) in collaboration with Dusan Jovic (NCEP/EMC), Robert Rozumalski (COMET), Wesley Ebisuzaki (NWS/HQTR), and Louisa Nance (NCAR/RAL/DTC). Upgrades to WRF Post Processor versions 2.2 and higher were performed by Hui-Ya Chuang, Dusan Jovic and Mathew Pyle (NCEP/EMC). Transitioning of the documentation from the WRF Post Processor to the Unified Post Processor was performed by Nicole McKee (NCEP/EMC), Hui-ya Chuang (NCEP/EMC), and Jamie Wolff (NCAR/RAL/DTC). Implementation of the Community Unified Post Processor was performed by Tricia Slovacek and Kate Fossell (NCAR/RAL/DTC).

NCEP Unified Post Processor (UPP)

UPP Introduction

The NCEP Unified Post Processor has replaced the WRF Post Processor (WPP). The UPP software package is based on WPP but has enhanced capabilities to post-process output from a variety of NWP models, including WRF-NMM, WRF-ARW, Non-hydrostatic Multi-scale Model on the B grid (NMMB), Global Forecast System (GFS), and Climate Forecast System (CFS). At this time, community user support is provided for the WRF-based systems and NMMB.

In addition to the option to output fields on the model's native vertical levels, UPP interpolates output from the model's native grids to National Weather Service (NWS) standard levels (pressure, height, etc.) and standard output grids (AWIPS, Lambert Conformal, polar-stereographic, etc.) in NWS and World Meteorological Organization (WMO) GRIB format. With the release of UPPv3.0, preliminary capabilities to output in GRIB Edition 2 (GRIB2) format for select models has been included and a simple template is available for users to modify to fit their needs. Caution should be taken when utilizing GRIB2; exhaustive testing has not been conducted and it is recommend to use this feature in testing/exploratory mode at this time. Updates will be provided as GRIB2 output capabilities become available and more comprehensive information will be included in the Users' Guide.

UPP incorporates the Joint Center for Satellite Data Assimilation (JCSDA) Community Radiative Transfer Model (CRTM) to compute model derived brightness temperature (T_B) for various instruments and channels. This additional feature enables the generation of a number of simulated satellite products including GOES and AMSRE products for WRF-NMM, Hurricane WRF (HWRF), WRF-ARW and GFS. For CRTM documentation, refer to

http://www.dtcenter.org/upp/users/docs/user_guide/crtm_ug/CRTM_User_Guide.pdf.

UPP Software Requirements

The Community Unified Post Processor requires the same Fortran and C compilers used to build the WRF model. In addition, the netCDF library, the JasPer library, the PNG library, Zlib, and the WRF I/O API libraries, which are included in the WRF model tar file, are also required. UPP uses WRF I/O libraries for data processing of all models and as a result UPP is dependent on a WRF build. The JasPer library, PNG library, and Zlib are new requirements with the release of UPPv2.0 and higher, due to the addition GRIB2 capabilities. NCEP provides these necessary codes for download: http://www.nco.ncep.noaa.gov/pmb/codes/GRIB2/

The UPP has some sample visualization scripts included to create graphics using either GrADS (<u>http://cola.gmu.edu/grads/gadoc/gadoc.php</u>) or GEMPAK (<u>http://www.unidata.ucar.edu/software/gempak/index.html</u>). These are not part of the UPP installation and need to be installed separately if one would like to use either plotting package.

UPP has been tested on LINUX platforms (with PGI, Intel and GFORTRAN compilers).

Obtaining the UPP Code

The UPP package can be downloaded from: http://www.dtcenter.org/upp/users/docs/user_guide/V3/upp_users_guide.pdf.

** *Note:* Always obtain the latest version of the code if you are not trying to continue a pre-existing project. <u>UPPV3.0 is just used as an example here.</u>

Once the *tar* file is obtained, *gunzip* and *untar* the file.

tar -zxvf UPPV3.0.tar.gz

This command will create a directory called UPPV3.0.

UPP Directory Structure

Under the main directory of *UPPV3.0* reside seven subdirectories (* indicates directories that are created after the configuration step):

arch: Machine dependent configuration build scripts used to construct *configure.upp*

bin*: Location of executables after compilation.

scripts: contains sample running scripts to process wrfout and nmmb_hist files.
run_unipost: run unipost, ndate and copygb.

run_unipost andgempak: run *unipost, ndate, copygb*, and GEMPAK to plot various fields.

run_unipost andgrads: run *unipost*, *ndate*, *copygb*, and GrADS to plot various fields.

run_unipost _frames: run *unipost*, *ndate* and *copygb* on a single *wrfout* file containing multiple forecast times.

run_unipost _gracet: run *unipost*, *ndate* and *copygb* on *wrfout* files with non-zero minutes/seconds.

run_unipost _minute: run unipost, ndate and copygb for sub-hourly wrfout
files.

run_unipostandgrads_global: run *unipost*, *ndate* and *copygb* and GrADS for global *wrfout* files; results in single GRIB1 file. (WRF data only)

include*: Source include modules built/used during compilation of UPP

lib*: Archived libraries built/used by UPP

parm: Contains the parameter files, which can be modified by the user to control how the post processing is performed.

src: Contains source codes for: copygb: Source code for *copygb* ndate: Source code for *ndate* unipost: Source code for unipost lib: Contains source code subdirectories for the UPP libraries **bacio**: Binary I/O library crtm2: Community Radiative Transfer Model library **g2:** GRIB2 support library **g2tmpl:** GRIB2 table support library gfsio: GFS I/O routines **ip**: General interpolation library (see *lib/ip/iplib.doc*) nemsio: NEMS I/O routines sfcio: API for performing I/O on the surface restart file of the global spectral model sigio: API for performing I/O on the sigma restart file of the global spectral model **sp**: Spectral transform library (see *lib/sp/splib.doc*) w3emc: Library for coding and decoding data in GRIB1 format **w3nco**: Library for coding and decoding data in GRIB1 format wrfmpi stubs: Contains some C and FORTRAN codes to generate *libmpi.a* library used to replace MPI calls for serial compilation.

xml: XML support – GRIB2 parameter file

Installing the UPP Code

UPP uses a build mechanism similar to that used by the WRF model. There are two environment variables that must be set before beginning the installation: a variable to define the path to a similarly compiled version of WRF and a variable to a compatible version of netCDF. The UPP code makes use of the i/o routines in WRF, therefore making it necessary to build WRF code even if processing NMMB forecast data. If the environment variable *WRF DIR* is set by (for example),

setenv WRF_DIR /home/user/WRFV3

this path will be used to reference WRF libraries and modules. Otherwise, the path

../WRFV3

will be used.

In the case neither method is set, the configure script will automatically prompt you for a pathname.

To reference the netCDF libraries, the configure script checks for an environment variable (*NETCDF*) first, then the system default (*/user/local/netcdf*), and then a user supplied link (*./netcdf_links*). If none of these resolve a path, the user will be prompted by the configure script to supply a path.

Type *configure*, and provide the required info. For example:

./configure

You will be given a list of choices for your computer.

Choices for LINUX operating systems are as follows:

- 1. Linux x86_64, PGI compiler (serial)
- 2. Linux x86_64, PGI compiler (dmpar)
- 3. Linux x86_64, Intel compiler (serial)
- 4. Linux x86 64, Intel compiler (dmpar)
- 5. Linux x86_64, Intel compiler, SGI MPT (serial)
- 6. Linux x86_64, Intel compiler, SGI MPT (dmpar)
- 7. Linux x86_64, gfortran compiler (serial)
- 8. Linux x86_64, gfortran compiler (dmpar)

Note: If UPP is compiled with distributed memory, it must be linked to a dmpar compilation of WRF.

Choose one of the configure options listed. Check the *configure.upp* file created and edit for compile options/paths, if necessary. For debug flag settings, the configure script can be run with a -d switch or flag.

To compile UPP, enter the following command:

./compile >& compile_upp.log &

When compiling with distributed memory (serial) this command should create 13 (14) UPP libraries in *UPPV3.0/lib/* (*libbacio.a, libCRTM.a, libg2.a, libg2tmpl.a, libgfsio.a, libip.a, (libmpi.a), libnemsio.a, ibsfcio.a, libsigio.a, libsp.a, libw3emc.a, libw3nco.a, libxmlparse.a*) and three UPP executables in *bin/* (*unipost.exe, ndate.exe*, and *copygb.exe*).

To remove all built files, as well as the *configure.upp*, type:

./clean

This action is recommended if a mistake is made during the installation process or a change is made to the configuration or build environment. There is also a *clean* -a option which will revert back to a pre-install configuration.

UPP Functionalities

The UPP,

- is compatible with WRF v3.3 and higher.
- can be used to post-process WRF-ARW, WRF-NMM, NMMB, GFS, and CFS forecasts (community support provided for WRF-based and NMMB forecasts).
- can ingest WRF history files (*wrfout**) in netCDF format.
- can ingest NMMB history files (*nmmb_hist**) in binary.

The UPP is divided into two parts:

1. Unipost

• Interpolates the forecasts from the model's native vertical coordinate to NWS standard output levels (e.g., pressure, height) and computes mean sea level pressure. If the requested parameter is on a model's native level, then no vertical interpolation is performed.

• Computes diagnostic output quantities (e.g., convective available potential energy, helicity, relative humidity). A full list of fields that can be generated by *unipost* is shown in Table 1.

• Outputs the results in NWS and WMO standard GRIB1 format (for GRIB documentation, see http://www.nco.ncep.noaa.gov/pmb/docs/).

- Destaggers the WRF-ARW forecasts from a C-grid to an A-grid.
- Outputs two navigation files, *copygb_nav.txt* (for WRF-NMM output only) and *copygb_hwrf.txt* (for WRF-ARW and WRF-NMM). These files can be used as input for *copygb*.
- copygb_nav.txt: This file contains the GRID GDS of a Lambert Conformal Grid similar in domain and grid spacing to the one used to run the WRF-NMM. The Lambert Conformal map projection works well for midlatitudes.
- > copygb_hwrf.txt: This file contains the GRID GDS of a Latitude-Longitude Grid similar in domain and grid spacing to the one used to run the WRF model. The latitude-longitude grid works well for tropics.

• Except for new capabilities of post processing GFS/CFS and additions of many new variables, UPP uses the same algorithms to derive most existing variables as were used in WPP. The only three exceptions/changes from the WPP are:

- Computes RH w.r.t. ice for GFS, but w.r.t. water for all other supported models. WPP computed RH w.r.t. water only.
- > The height and wind speed at the maximum wind level is computed by

assuming the wind speed varies quadratically in height in the location of the maximum wind level. The WPP defined maximum wind level at the level with the maximum wind speed among all model levels. The static tropopause level is obtained by finding the lowest level that has a temperature lapse rate of less than 2 K/km over a 2 km depth above it. The WPP defined the tropopause by finding the lowest level that has a mean temperature lapse rate of 2 K/km over three model layers.

- 2. Copygb
 - Destaggers the WRF-NMM forecasts from the staggered native E-grid to a regular non-staggered grid. (Since *unipost* destaggers WRF-ARW output from a C-grid to an A-grid, WRF-ARW data can be displayed directly without going through *copygb*.)
 - Destaggers the NMMB forecasts from the staggered native B-grid to a regular non-staggered grid.
 - Interpolates the forecasts horizontally from their native grid to a standard AWIPS or user-defined grid (for information on AWIPS grids, see http://www.nco.ncep.noaa.gov/pmb/docs/on388/tableb.html).
 - Outputs the results in NWS and WMO standard GRIB1 format (for GRIB documentation, see http://www.nco.ncep.noaa.gov/pmb/docs/).

Note: Copygb only works with GRIB1 format; for GRIB2, use wgrib2. (for downloading the source code and information on compiling on your system, see <u>http://www.cpc.ncep.noaa.gov/products/wesley/wgrib2/</u>)

In addition to *unipost* and *copygb*, a utility called *ndate* is distributed with the UPP tarfile. This utility is used to format the dates of the forecasts to be posted for ingestion by the codes.

Setting up the WRF or NMMB model to interface with UPP

The *unipost* program is currently set up to read a large number of fields from the WRF and NMMB model history files. This configuration stems from NCEP's need to generate all of its required operational products. When using the netCDF or NEMS binary read, this program is configured such that it will run successfully even if an expected input field is missing from the WRF or NMMB history file as long as this field is not required to produce a requested output field. If the pre-requisites for a requested output field are missing from the WRF or NMMB history file, *unipost* will abort at run time.

Take care not to remove fields from the *wrfout* or *nmmb* files, which may be needed for diagnostic purposes by the UPP package. For example, if isobaric state fields are requested, but the pressure fields on model interfaces (PINT for WRF-NMM, P and PB for WRF-ARW) are not available in the history file, *unipost* will abort at run time. In general, the default fields available in the *wrfout* or *nmmb* files are sufficient to run UPP. The fields written to the WRF (NMMB) history file are controlled by the settings in the Registry (solver state) (for WRF: see *Registry.EM*, *Registry.EM*_COMMON) or

Registry.NMM(_NEST) files in the **Registry** subdirectory of the main **WRFV3** directory; for NMMB: see **solver_state.txt**). **Note:** It is necessary to re-compile the WRF model source code after modifying the Registry file.

UPP is written to process a single forecast hour, therefore, having a single forecast per output file is optimal. However, for WRF based forecasts, UPP can be run across multiple forecast times in a single output file to extract a specified forecast hour.

UPP Control File Overview

a) GRIB1 control file

Note: This section pertains to outputting GRIB1 format only. This format is currently the preferred output format since GRIB2 (next section) is still in a development stage.

The user interacts with *unipost* through the control file, *parm/wrf_cntrl.parm* for WRF runs, or *nmb_cntrl.parm* for NMMB. Note that these two files are identical with the exception of the "DATSET" used for prefix of the output name. This was done in effort to maintain distinction between WRF and NMMB output.

The control file is composed of a header and a body. The header specifies the output file information. The body allows the user to select which fields and levels to process.

The header of the *wrf_cntrl.parm* (*nmb_cntrl.parm*) file contains the following variables:

- **KGTYPE**: defines output grid type, which should always be 255.
- **IMDLTY:** identifies the process ID for AWIPS.
- **DATSET**: defines the prefix used for the output file name. Currently set to "*WRFPRS*" ("*NMBPRS*"). Note: the run_* scripts assume "*WRFPRS*" is used for WRF runs and "*NMBPRS*" is used for NMMB runs.

The body of the *wrf_cntrl.parm* (*nmb_cntrl.parm*) file is composed of a series of line pairs similar to the following:

where,

• The top line specifies the variable (e.g. PRESS) to process, the level type (e.g. ON MDL SFCS) a user is interested in, and the degree of accuracy to be retained (SCAL=3.0) in the GRIB output.

• SCAL defines the precision of the data written out to the GRIB format. Positive values denote decimal scaling (maintain that number of significant

digits), while negative values describe binary scaling (precise to 2[{]{SCAL}; i.e., SCAL=-3.0 gives output precise to the nearest 1/8). Because *copygb* is unable to handle binary precision at this time, negative numbers are discouraged.

 \circ A list of all possible output fields for *unipost* is provided in Table 1. This table provides the full name of the variable in the first column and an abbreviated name in the second column. The abbreviated names are used in the control file. Note that the variable names also contain the type of level on which they are output. For instance, temperature is available on "model surface" and "pressure surface".

• The second line specifies the levels on which the variable is to be posted. In this case, "0" indicates no output at this level and "1" indicates output the variable specified on the top line at the level specified by the position of the digit and the type of level defined for this variable. For flight/wind energy fields, a "2" may be specified, such that "2" requests AGL and "1" requests MSL.

Controlling which variables unipost outputs

To output a field, the body of the control file needs to contain an entry for the appropriate variable and output for this variable must be turned on for at least one level (see next section: "*Controlling which levels unipost outputs*"). If an entry for a particular field is not yet available in the control file, two lines may be added to the control file with the appropriate entries for that field.

Controlling which levels unipost outputs

The second line of each pair determines which levels *unipost* will output. Output on a given level is turned off by a "0" or turned on by a "1".

- For isobaric output, 47 levels are possible, from 2 to 1013 hPa (2, 5, 7, 10, 20, 30, 50, 70 mb and then every 25 mb from 75 to 1000 mb). The complete list of levels is specified in *sorc/unipost/CTLBLK.f*.
 - Modify specification of variable LSMDEF to change the number of pressure levels: LSMDEF=47
 - Modify specification of SPLDEF array to change the values of pressure levels:

(/200.,500.,700.,1000.,2000.,3000.

&,5000.,7000.,7500.,10000.,12500.,15000.,17500.,20000., .../)

- For model-level output, all model levels are possible, from the highest to the lowest.
- When using the Noah LSM, the *soil layers* are 0-10 cm, 10-40 cm, 40-100 cm, and 100-200 cm.
- When using the RUC LSM, the *soil levels* are 0 cm, 5 cm, 20 cm, 40 cm, 160 cm, and 300 cm. For the RUC LSM it is also necessary to turn on two additional output levels in the *wrf_cntrl.parm* (*nmb_cntrl.parm*) to output 6 levels rather than the default 4 layers for the Noah LSM.

- When using Pliem-Xiu LSM, there are two layers: 0-1 cm, 1-100 cm
- For PBL layer averages, the levels correspond to 6 layers with a thickness of 30 hPa each.
- For flight level, the levels are 30 m, 50 m, 80 m, 100 m, 305 m, 457 m, 610 m, 914 m, 1524 m, 1829 m, 2134 m, 2743 m, 3658 m, 4572 m, and 6000 m.
- For AGL radar reflectivity, the levels are 4000 and 1000 m (see Appendix A for details).
- For surface or shelter-level output, only the first position of the line needs to be turned on.

• For example, the sample control file *parm/wrf_cntrl.parm* has the following entry for surface dew point temperature:

Based on this entry, surface dew point temperature will not be output by *unipost*. To add this field to the output, modify the entry to read:

b) GRIB2 file

Note: This section describes the control file for outputting GRIB2 format. Disclaimer: This feature is still in preliminary stages and not fully tested; use with caution. Updates will be provided as they become available.

Version 3.0

- The xml file *parm/postcntrl.xml* replaces the *wrf_cntrl.parm* file to declare which fields you want to output from UPP. The samples in *parm/wrfcnrtl.xml* and *parm/nmbcntrl.xml* are not exhaustive at this time and is provided as a template only. Note that it will require edits by the user to expand beyond the basic testing setup.
- A list of available GRIB2 fields is in *parm/post_avblflds.xml*. UPP uses this file to define certain field parameters. Users may look in this file to view a full list of available GRIB2 fields. Again, as new fields are added or modified they will be provided.
- To run grib2, copy a xml template to be named postcntrl.xml in the DOMAINPATH/parm/ directory as outlined below. Edit the xml file as needed.

Version 3.1

- For outputting GRIB2 format using version 3.1, a preprocessing step is required by the user to convert the xml file *parm/postcntrl.xml* to a flat text file *postxconfig-NT.txt*. This new flat file is quicker to process than the old xml file. The user will still need to edit the postcntrl.xml file to declare which fields are to be output from UPP.
- In order to ensure that the user-edited xml files are error free, XML stylesheets (*parm/EMC_POST_CTRL_Schema.xsd* and *EMC_POST_Avblflds_Schema.xsd*) are used to validate both the *postcntrl.xml* and *post_avblflds.xml* files respectively. Confirmation of validation will be given (e.g. postcntrl.xml validates) or otherwise return errors if it does not match the schema. To run the validation:

xmllint --noout --schema EMC_POST_CTRL_Schema.xsd <postcntrl.xml>
xmllint --noout --schema EMC_POST_Avblflds_Schema.xsd
<post avblflds.xml>

• Once the xmls are validated, the user will need to generate the flat file. Edit the *parm/makefile* if necessary to point to the correct flat file directory and xmls. The makefile will call the perl program *parm/POSTXMLPreprocessor.pl* to generate the post flat file *postxconfig-NT.txt*. Generate the flat file:

make

Note: The new flat file can only be used for running version 3.1 and is not backwards compatible with version 3.0.

Running UPP

Seven scripts for running the UPP package are included in the tar file:

run_unipost run_unipostandgrads run_unipostandgempak run_unipost_frames run_unipost_gracet run_unipost_minute run_unipostandgrads_global

Before running any of the above listed scripts, perform the following instructions:

- 1. cd to your DOMAINPATH directory.
- 2. Make a directory to put the UPP results.

mkdir postprd

3. Make a directory to put a copy of *wrf_cntrl.parm (nmb_cntrl.parm)* file if running grib1 or *postcntrl.xml* for v3.0 (*postxconfig-NT.txt* for v3.1) file if running grib2.

mkdir parm

4. Copy over the relevant control file to your working directory to customize *unipost*. For Grib1, copy the default *UPPV3.0/parm/wrf_cntrl.parm* (*nmb_cntrl.parm*) file For Grib2, copy a template *UPPV3.0/parm/wrfcntrl.xml* (*nmbcntrl.xml*) file to be named *postcntrl.xml* if using v3.0 or *UPPV3.1/parm/postxconfig-NT_WRF.txt* (*postxconfig-NT_NMB.txt*) to be named *postxconfig-NT_txt* if using v3.1.

5. Edit the *wrf_cntrl.parm* (*nmb_cntrl.parm*) file to reflect the fields and levels you want *unipost* to output. (For Grib2: Edit the *postcntrl.xml* file for v3.0 or the *postxconfig-NT.txt* file for v3.1)

- 6. Copy over the (UPPV3.0/scripts/run_unipost*) script of your choice to the postprd/.
- 7. Edit the run script as outlined below.

Once these directories are set up and the edits outlined below are complete, the scripts can be run interactively from the *postprd* directory by simply typing the script name on the command line.

Overview of the scripts to run the UPP

Note: It is recommended that the user refer to the *run_unipost** scripts in the *script/* while reading this overview.

Since V3.0, user modified variables are now all contained at the top of the *run_unipost** script in one user-edit section, along with a brief description. Descriptions below follow the *run_unipost* script.

1. Set up basic path variables:

TOP_DIR : Top level directory for source codes (UPPV3.0 and WRFV3)
DOMAINPATH : Working directory for this run
WRFPATH : Location of compiled WRFV3
UNIPOST_HOME : Location of the UPPV3.0 build directory
POSTEXEC : Location of the UPPV3.0 executables
modelDataPath : Location of the model output data files to be processed
: e.g. "wrfprd/" for WRF-based runs; "nemsprd/" for NMMB forecasts.
paramFile : Name and location of cntrl.parm (wrf_cntrl.parm or nmb_cntrl.parm) text file that lists desired fields for GRIB1 output. Template in UPPV3.0/parm/
xmlCntrlFile : Name and location of postcntrl.xml.XML file that lists desired fields for GRIB2 output for version 3.0. Templates in

UPPV3.0/parm/wrfcntrl.xml or UPPV3.0/parm/nmbcntrl.xml txtCntrlFile : Name and location of *postxconfig-NT.txt* file that lists desired fields for GRIB2 format for version 3.1. This file is generated by the user following the steps list above.

Note: The scripts are configured such that *unipost* expects the WRF history files (*wrfout** files) to be in *wrfprd*/, the *wrf_cntrl.parm* (*postcntrl.xml* or *postxconfig-NT.txt*) file to be in *parm*/ and the postprocessor working directory to be called *postprd*/, all under *DOMAINPATH*. Similarly with NMMB, NMMB history files (*nmmb_hist**) are to be in *nemsprd*/, *nmb_cntrl.parm* (*postcntrl.xml* or *postxconfig-NT.txt*) file to be in *parm*, and the output to be in *postprd*, all under *DOMAINPATH*.

This set up is for user convenience to have a script ready to run, paths may be modified but be sure to check run script to make sure settings are correct.

- 2. Specify dynamic core being run ("NMM" or "ARW" or "NMB") *dyncore* : What model core is used ("NMM" or "ARW" or "NMB")
- 3. Specify the format for the input model files and output UPP files.

inFormat	: Format of the model data
	arw – "netcdf"
	nmm – "netcdf"
	nmb – "binarynemsio"
outFormat	: Format of output from UPP
	grib
	grib2 - NOTE: GRIB2 is not extensively tested, use with caution.
	No GRIB2 destaggering support for NMB or NMM grids;
	Suggested use with ARW only at this time.

4. Specify the forecast cycles to be post-processed

startdate	: Forecast start date (YYYYMMDDHH)
fhr	: First forecast hour to be post-processed
lastfhr	: Last forecast hour to be post-processed

incrementhr : Increment (in hours) between forecast files

* Do not set to 0 or the script will loop continuously *

- 5. Set up how many domains will be post-processed *domain list* : List of domains for run (e.g. "d01 d02")
- 6. Set/uncomment the run command for your system. (i.e. serial, mpirun, etc). *RUN_COMMAND* : System run command for serial or parallel runs
 - The default execution command in the distributed scripts is for a single processor: ./*unipost.exe* > unipost_\${domain}.\${fhr}.out 2>&1.
 - To run *unipost* using mpi (dmpar compilation), the command line should

be:

>> LINUX-MPI systems: mpirun -np N unipost.exe > outpost 2>&1
(Note: on some systems a host file also needs to be specified: machinefile "host")
>> IBM: mpirun.lsf unipost.exe < itag > outpost

7. Set *copygb* grid definitions (mandatory for NMM or NMMB) *copygb_opt* : Copygb grid option to destagger and regrid NMM or NMB "lambert" = Grid spec for *copygb* generated internally for lambert data Reads *copygb_gridnav.txt*"lat-lon" = Grid spec for *copygb* generated internally for lat-lon data Reads *copygb_hwrf.txt*"awips" = Use a predefined awips grid, e.g. 212 ** Uncomment "export awips_id= " and add desired grid number. "custom" = Specify your own grid ** Uncomment "export custom_gds= " and add grid description.

Note: More information about *copygb* is provided below under "*Examples of copygb*". *Copygb* runs on GRIB1 format only. For GRIB2 format, *wgrib2* is required, with more information provided below under "*Examples of wgrib2*".

8. Set naming convention for prefix and extension of output file name

i. *comsp* is the initial string of the output file name (by default it is not set and the prefix of the output file will be the string set in *wrf_cntrl.parm* (*nmb_cntrl.parm*) DATSET, if set it will concatenate the setting to the front of the string specified in *wrf_cntrl.parm* (*nmb_cntrl.parm*) DATSET)
ii. *tmmark* is used for the file extension (in *run_unipost*, *tmmark=tm00*, if not set, it is set to .*GrbF*)

Since V3.0, the *itag* that will be read in by *unipost.exe* from stdin (unit 5) is generated automatically in the *run_unipost* script based on the user-defined options above. It should not be necessary to edit this. For description purposes, the namelist (*itag*) contains 5 lines:

- i. Name of the WRF or NMB output file to be posted.
- ii. Format of WRF or NMB model output (netcdf, binarynemsio).
- iii. Format of UPP output (GRIB1 or GRIB2)

iv. Forecast valid time (not model start time) in WRF or NMB format (the forecast time desired to be post-processed).

v. Dynamic core used (NMM or NCAR).

Note: With the addition of GRIB2 output capabilities, a fifth line has been added to the namelist. If the third line (i.e., UPP output type) is not set, UPP will default the output file format to "grib1".

If scripts *run_unipostandgrads* or *run_unipostandgempak* are used, additional steps are taken to create image files (see **Visualization** section below).

Upon a successful run, *unipost* and *copygb* will generate output files *WRFPRS_dnn.hh* (*NMBPRS_dnn.hh*) and *wrfprs_dnn.hh* (*nmbprs_dnn.hh*), respectively, in the postprocessor working directory, where "*nn*" refers to the domain id and "*hh*" denotes the forecast hour. In addition, the script *run_unipostandgrads* will produce a suite of png images named *variablehh_GrADS.png*, and the script *run_unipostandgempak* will produce a suite of gif images named *variablehh.gif*.

If the run did not complete successfully, a log file in the post-processor working directory called *unipost_dnn.hh.out*, where "*nn*" is the domain id and "*hh*" is the forecast hour, may be consulted for further information.

Examples of copygb

Sample command line for calling *copygb*: *copygb.exe –xg"grid [kgds]" input_file output_file* where *grid* refers to the output grid to which the native forecast is being interpolated.

The output grid can be specified in three ways:

i. As the grid id of a pre-defined AWIPS grid number (gridno):

copygb.exe -g\${gridno} -x input_file output_file

For example, using grid 218: copygb.exe -xg"218" WRFPRS_\$domain.\${fhr} wrfprs_\$domain .\${fhr}

ii. As a user defined standard grid, such as for grid 255:

copygb.exe -xg"255 kgds" input_file output_file

where the user defined grid is specified by a full set of kgds parameters determining a GRIB GDS (grid description section) in the *W3fi63* format. Details on how to specify the kgds parameters are documented in file *lib/w3lib/w3fi71.f.* For example:

copygb.exe -xg" 255 3 109 91 37719 -77645 8 -71000 10433 9966 0 64 42000 42000" WRFPRS_\$domain.\${fhr} wrfprs_\$domain.\${fhr}

iii. From a file: When WRF-NMM output is processed by *unipost*, two text files, *copygb_gridnav.txt* and *copygb_hwrf.txt*, are created. These files contain the GRID GDS of a Lambert Conformal Grid (file *copygb_gridnav.txt*) or lat/lon grid (*copygb_hwrf.txt*) similar in domain and grid spacing to the one used to run the WRF-NMM model. The contents of one of these files are read into variable *nav* and can be used as input to

copygb.exe.

copygb.exe -xg"\$nav" input_file output_file

For example, when using "*copygb_gridnav.txt*" for an application, the steps include:

read nav < 'copygb_gridnav.txt'
export nav
copygb.exe -xg''\${nav}'' WRFPRS_\$domain.\${fhr}
wrfprs_\$domain.\${fhr}</pre>

It should be noted that *copygb* is a flexible program that can accept several command line options specifying details of how the horizontal interpolation from the native grid to the output grid should be performed. Complete documentation of *copygb* can be found at: http://www.dtcenter.org/met/users/support/online_tutorial/METv5.0/copygb/copygb.txt

Examples of wgrib2

Wgrib2 is a versatile program that has the ability to convert grib2 files from one grid to another for various user-defined grids as well as pre-defined NCEP grids. Complete documentation with examples of re-gridding can be found at: http://www.cpc.ncep.noaa.gov/products/wesley/wgrib2/new_grid.html.

Sample command line usage for calling wgrib2:

wgrib2 -new_grid_winds W-new_grid A B C outfile

W = earth or grid

earth: winds oriented to the earth's north and south directions grid: winds are rotated so that north is relative to the grid *A*, *B*, and *C* represent the output grid description

Sample lat-lon grid description:

A = latlon B = lon0:nlon:dlon lon0 is longitude of first grid point in degrees nlon is number of longitudes dlon is grid resolution in degrees of longitude C = lat0:nlat:dlat lat0 is latitude of first grid point nlat is number of latitudesdlat is grid resolution in degrees of latitude *Note:* At this time, wgrib2 is not distributed within the UPP tar file. Users may download and install from <u>http://www.cpc.ncep.noaa.gov/products/wesley/wgrib2/</u>.

Visualization with UPP

GEMPAK

The GEMPAK utility *nagrib* is able to decode GRIB files whose navigation is on any non-staggered grid. Hence, GEMPAK is able to decode GRIB files generated by the UPP package and plot horizontal fields or vertical cross sections.

A sample script named *run_unipostandgempak*, which is included in the *scripts* directory of the tar file, can be used to run *unipost*, *copygb*, and plot the following fields using GEMPAK:

- *Sfcmap_dnn_hh.gif*: mean SLP and 6 hourly precipitation
- **PrecipType dnn hh.gif:** precipitation type (just snow and rain)
- **850mbRH_dnn_hh.gif:** 850 mb relative humidity
- **850mbTempandWind dnn hh.gif:** 850 mb temperature and wind vectors
- **500mbHandVort dnn hh.gif:** 500 mb geopotential height and vorticity
- **250mbWindandH_dnn_hh.gif:** 250 mb wind speed isotacs and geopotential height

This script can be modified to customize fields for output. GEMPAK has an online users guide at

http://www.unidata.ucar.edu/software/gempak/help_and_documentation/manual/.

In order to use the script *run_unipostandgempak*, it is necessary to set the environment variable *GEMEXEC* to the path of the GEMPAK executables. For example,

setenv GEMEXEC /usr/local/gempak/bin

Note: For GEMPAK, the precipitation accumulation period for WRF-NMM is given by the variable *incrementhr* in the *run_unipostandgempak* script.

GrADS

The GrADS utilities *grib2ctl.pl (g2ctl.pl)* and *gribmap* are able to decode GRIB1 (GRIB2) files whose navigation is on any non-staggered grid. These utilities and instructions on how to use them to generate GrADS control files are available from: <u>http://www.cpc.ncep.noaa.gov/products/wesley/grib2ctl.html</u> for GRIB1 and <u>http://www.cpc.ncep.noaa.gov/products/wesley/g2ctl.html</u> for GRIB2.

The GrADS package is available from: <u>http://cola.gmu.edu/grads/gadoc/gadoc.php</u>.

GrADS has an online User's Guide at: <u>http://cola.gmu.edu/grads/gadoc/users.html</u> and a list of basic commands for GrADS can be found at: <u>http://cola.gmu.edu/grads/gadoc/reference_card.pdf.</u>

A sample script named *run_unipostandgrads*, which is included in the *scripts* directory of the Unified Post Processing package, can be used to run *unipost*, *copygb*, and plot the following fields using GrADS:

- *Sfcmaphh_dnn_GRADS.png*: mean SLP and 6-hour accumulated precipitation.
- **850mbRHhh_dnn_GRADS.png**: 850 mb relative humidity
- **850mbTempandWindhh_dnn_GRADS.png**: 850 mb temperature and wind vectors
- **500mbHandVorthh_dnn_GRADS.png**: 500 mb geopotential heights and absolute vorticity
- **250mbWindandHhh_dnn_GRADS.png**: 250 mb wind speed isotacs and geopotential heights

In order to use the script *run_unipostandgrads*, it is necessary to:

1. Set the environmental variable *GADDIR* to the path of the GrADS fonts and auxiliary files. For example,

setenv GADDIR /usr/local/grads/data

2. Add the location of the GrADS executables to the *PATH*. For example

setenv PATH /usr/local/grads/bin:\$PATH

3. Link script *cbar.gs* to the post-processor working directory. (This scripts is provided in UPP package, and the *run_unipostandgrads* script makes a link from *scripts/* to *postprd/*.) To generate the plots above, GrADS script *cbar.gs* is invoked. This script can also be obtained from the GrADS library of scripts at http://cola.gmu.edu/grads/gadoc/library.html.

Note: For GrADS, the precipitation accumulation period for WRF-NMM is plotted over the subintervals of the *tprec* hour (set in *namelist.input*).

Fields produced by unipost

Table 1 lists basic and derived fields that are currently produced by *unipost*. The abbreviated names listed in the second column describe how the fields should be entered in the control file (*wrf_cntrl.parm*).

 Table 1: Fields produced by unipost (column 1), abbreviated names used in the wrf_cntrl.parm (nmb_cntrl.parm) file (column 2), corresponding GRIB identification number for the field (column 3), and corresponding GRIB identification number for the

vertical coordinate (column 4).

Field Name	Name In Control File	Grib ID	Vertic
			al
			Level
Radar reflectivity on model	RADAR REFL MDL SFCS	211	109
surface*			
Pressure on model surface	PRESS ON MDL SFCS	1	109
Height on model surface	HEIGHT ON MDL SFCS	7	109
Temperature on model surface	TEMP ON MDL SFCS	11	109
Potential temperature on model	POT TEMP ON MDL SFCS	13	109
surface			
Dew point temperature on model	DWPT TEMP ON MDL SFC	17	109
surface			
Specific humidity on model	SPEC HUM ON MDL SFCS	51	109
surface			
Relative humidity on model	REL HUM ON MDL SFCS	52	109
surface			
Moisture convergence on model	MST CNVG ON MDL SFCS	135	109
surface			
U component wind on model	U WIND ON MDL SFCS	33	109
surface			
V component wind on model	V WIND ON MDL SFCS	34	109
surface			
Cloud water on model surface	CLD WTR ON MDL SFCS	153	109
Cloud ice on model surface	CLD ICE ON MDL SFCS	58	109
Rain on model surface	RAIN ON MDL SFCS	170	109
Snow on model surface	SNOW ON MDL SFCS	171	109
Cloud fraction on model surface	CLD FRAC ON MDL SFCS	71	109
Omega on model surface	OMEGA ON MDL SFCS	39	109
Absolute vorticity on model	ABS VORT ON MDL SFCS	41	109
surface			
Geostrophic streamfunction on	STRMFUNC ON MDL SFCS	35	109
model surface			
Turbulent kinetic energy on	TRBLNT KE ON MDL SFC	158	109
model surface			
Richardson number on model	RCHDSN NO ON MDL SFC	254	109
surface			
Master length scale on model	MASTER LENGTH SCALE	226	109
surface			
Asymptotic length scale on model	ASYMPT MSTR LEN SCL	227	109
surface			
Radar reflectivity on pressure	RADAR REFL ON P SFCS	211	100
surface*			
Height on pressure surface	HEIGHT OF PRESS SFCS	7	100

Temperature on pressure surface	TEMP ON PRESS SFCS	11	100
Potential temperature on pressure	POT TEMP ON P SFCS	13	100
surface			
Dew point temperature on	DWPT TEMP ON P SFCS	17	100
pressure surface			
Specific humidity on pressure	SPEC HUM ON P SFCS	51	100
surface			
Relative humidity on pressure	REL HUMID ON P SFCS	52	100
surface			
Moisture convergence on pressure	MST CNVG ON P SFCS	135	100
surface			
U component wind on pressure	U WIND ON PRESS SFCS	33	100
surface			
V component wind on pressure	V WIND ON PRESS SFCS	34	100
surface			
Omega on pressure surface	OMEGA ON PRESS SFCS	39	100
Absolute vorticity on pressure	ABS VORT ON P SFCS	41	100
surface			
Geostrophic streamfunction on	STRMFUNC ON P SFCS	35	100
pressure surface			
Turbulent kinetic energy on	TRBLNT KE ON P SFCS	158	100
pressure surface			
Cloud water on pressure surface	CLOUD WATR ON P SFCS	153	100
Cloud ice on pressure surface	CLOUD ICE ON P SFCS	58	100
Rain on pressure surface	RAIN ON P SFCS	170	100
Snow water on pressure surface	SNOW ON P SFCS	171	100
Total condensate on pressure	CONDENSATE ON P SFCS	135	100
surface			
Mesinger (Membrane) sea level	MESINGER MEAN SLP	130	102
pressure			
Shuell sea level pressure	SHUELL MEAN SLP	2	102
2 M pressure	SHELTER PRESSURE	1	105
2 M temperature	SHELTER TEMPERATURE	11	105
2 M specific humidity	SHELTER SPEC HUMID	51	105
2 M mixing ratio	SHELTER MIX RATIO	53	105
2 M dew point temperature	SHELTER DEWPOINT	17	105
2 M RH	SHELTER REL HUMID	52	105
10 M u component wind	U WIND AT ANEMOM HT	33	105
10 M v component wind	V WIND AT ANEMOM HT	34	105
10 M potential temperature	POT TEMP AT 10 M	13	105
10 M specific humidity	SPEC HUM AT 10 M	51	105
Surface pressure	SURFACE PRESSURE	1	1
Terrain height	SURFACE HEIGHT	7	1
Skin potential temperature	SURFACE POT TEMP	13	1
Skin specific humidity	SURFACE SPEC HUMID	51	1

Skin dew point temperature	SURFACE DEWPOINT	17	1
Skin Relative humidity	SURFACE REL HUMID	52	1
Skin temperature	SFC (SKIN) TEMPRATUR	11	1
Soil temperature at the bottom of	BOTTOM SOIL TEMP	85	111
soil layers			
Soil temperature in between each	SOIL TEMPERATURE	85	112
of soil layers			
Soil moisture in between each of	SOIL MOISTURE	144	112
soil layers			
Snow water equivalent	SNOW WATER EQUIVALNT	65	1
Snow cover in percentage	PERCENT SNOW COVER	238	1
Heat exchange coeff at surface	SFC EXCHANGE COEF	208	1
Vegetation cover	GREEN VEG COVER	87	1
Soil moisture availability	SOIL MOISTURE AVAIL	207	112
Ground heat flux - instantaneous	INST GROUND HEAT FLX	155	1
Lifted index—surface based	LIFTED INDEX—SURFCE	131	101
Lifted index—best	LIFTED INDEX—BEST	132	116
Lifted index—from boundary	LIFTED INDEX—BNDLYR	24	116
layer			
CAPE (4 types) ***	CNVCT AVBL POT ENRGY	157	1
	(Levels 1-4)		
CIN (4 types) ***	CNVCT INHIBITION	156	1
	(Levels 1-4)		
Column integrated precipitable	PRECIPITABLE WATER	54	200
water			
Column integrated cloud water	TOTAL COLUMN CLD WTR	136	200
Column integrated cloud ice	TOTAL COLUMN CLD ICE	137	200
Column integrated rain	TOTAL COLUMN RAIN	138	200
Column integrated snow	TOTAL COLUMN SNOW	139	200
Column integrated total	TOTAL COL CONDENSATE	140	200
condensate			
Helicity	STORM REL HELICITY	190	106
U component storm motion	U COMP STORM MOTION	196	106
V component storm motion	V COMP STORM MOTION	197	106
Accumulated total precipitation	ACM TOTAL PRECIP	61	1
Accumulated convective	ACM CONVCTIVE PRECIP	63	1
precipitation			
Accumulated grid-scale	ACM GRD SCALE PRECIP	62	1
precipitation			
Accumulated snowfall	ACM SNOWFALL	65	1
Accumulated large scale snow	ACM GRD SCALE SW ICE	79	1
Accumulated total snow melt	ACM SNOW TOTAL MELT	99	1
Precipitation type (4 types) –	INSTANT PRECIP TYPE	140	1
instantaneous			
Precipitation rate - instantaneous	INSTANT PRECIP RATE	59	1

Composite radar reflectivity*	COMPOSITE RADAR REFL	212	200
Low level cloud fraction	LOW CLOUD FRACTION	73	214
Mid level cloud fraction	MID CLOUD FRACTION	74	224
High level cloud fraction	HIGH CLOUD FRACTION	75	234
Total cloud fraction	TOTAL CLD FRACTION	71	200
Time-averaged total cloud	AVG TOTAL CLD FRAC	71	200
fraction			
Time-averaged stratospheric	AVG STRAT CLD FRAC	213	200
cloud fraction			
Time-averaged convective cloud	AVG CNVCT CLD FRAC	72	200
fraction			
Cloud bottom pressure	CLOUD BOT PRESSURE	1	2
Cloud top pressure	CLOUD TOP PRESSURE	1	3
Cloud bottom height	CLOUD BOTTOM HEIGHT	7	2
(above MSL)			
Cloud top height	CLOUD TOP HEIGHT	7	3
(above MSL)			
Convective cloud bottom pressure	CONV CLOUD BOT PRESS	1	242
Convective cloud top pressure	CONV CLOUD TOP PRESS	1	243
Shallow convective cloud bottom	SHAL CU CLD BOT PRES	1	248
pressure			
Shallow convective cloud top	SHAL CU CLD TOP PRES	1	249
pressure			
Deep convective cloud bottom	DEEP CU CLD BOT PRES	1	251
pressure			
Deep convective cloud top	DEEP CU CLD TOP PRES	1	252
pressure			
Grid scale cloud bottom pressure	GRID CLOUD BOT PRESS	1	206
Grid scale cloud top pressure	GRID CLOUD TOP PRESS	1	207
Convective cloud fraction	CONV CLOUD FRACTION	72	200
Convective cloud efficiency	CU CLOUD EFFICIENCY	134	200
Above-ground height of LCL	LCL AGL HEIGHT	7	5
Pressure of LCL	LCL PRESSURE	1	5
Cloud top temperature	CLOUD TOP TEMPS	11	3
Temperature tendency from	RADFLX CNVG TMP TNDY	216	109
radiative fluxes			
Temperature tendency from	SW RAD TEMP TNDY	250	109
shortwave radiative flux			
Temperature tendency from	LW RAD TEMP TNDY	251	109
longwave radiative flux			
Outgoing surface shortwave	INSTN OUT SFC SW RAD	211	1
radiation - instantaneous			
Outgoing surface longwave	INSTN OUT SFC LW RAD	212	1
radiation - instantaneous			
Incoming surface shortwave	AVE INCMG SFC SW RAD	204	1

radiation - time-averaged			
Incoming surface longwave	AVE INCMG SFC LW RAD	205	1
radiation - time-averaged			
Outgoing surface shortwave	AVE OUTGO SFC SW RAD	211	1
radiation - time-averaged			
Outgoing surface longwave	AVE OUTGO SFC LW RAD	212	1
radiation - time-averaged			
Outgoing model top shortwave	AVE OUTGO TOA SW RAD	211	8
radiation - time-averaged			
Outgoing model top longwave	AVE OUTGO TOA LW RAD	212	8
radiation - time-averaged			
Incoming surface shortwave	INSTN INC SFC SW RAD	204	1
radiation - instantaneous			
Incoming surface longwave	INSTN INC SFC LW RAD	205	1
radiation - instantaneous			
Roughness length	ROUGHNESS LENGTH	83	1
Friction velocity	FRICTION VELOCITY	253	1
Surface drag coefficient	SFC DRAG COEFFICIENT	252	1
Surface u wind stress	SFC U WIND STRESS	124	1
Surface v wind stress	SFC V WIND STRESS	125	1
Surface sensible heat flux - time-	AVE SFC SENHEAT FX	122	1
averaged			
Ground heat flux - time-averaged	AVE GROUND HEAT FX	155	1
Surface latent heat flux - time-	AVE SFC LATHEAT FX	121	1
averaged			
Surface momentum flux - time-	AVE SFC MOMENTUM FX	172	1
averaged			
Accumulated surface evaporation	ACC SFC EVAPORATION	57	1
Surface sensible heat flux –	INST SFC SENHEAT FX	122	1
instantaneous			
Surface latent heat flux -	INST SFC LATHEAT FX	121	1
instantaneous			
Latitude	LATITUDE	176	1
Longitude	LONGITUDE	177	1
Land sea mask (land=1, sea=0)	LAND/SEA MASK	81	1
Sea ice mask	SEA ICE MASK	91	1
Surface midday albedo	SFC MIDDAY ALBEDO	84	1
Sea surface temperature	SEA SFC TEMPERATURE	80	1
Press at tropopause	PRESS AT TROPOPAUSE	1	7
Temperature at tropopause	TEMP AT TROPOPAUSE	11	7
Potential temperature at	POTENTL TEMP AT TROP	13	7
tropopause			
U wind at tropopause	U WIND AT TROPOPAUSE	33	7
V wind at tropopause	V WIND AT TROPOPAUSE	34	7
Wind shear at tropopause	SHEAR AT TROPOPAUSE	136	7

Height at tropopause	HEIGHT AT TROPOPAUSE	7	7
Temperature at flight levels	TEMP AT FD HEIGHTS	11	103
U wind at flight levels	U WIND AT FD HEIGHTS	33	103
V wind at flight levels	V WIND AT FD HEIGHTS	34	103
Freezing level height (above	HEIGHT OF FRZ LVL	7	4
mean sea level)			
Freezing level RH	REL HUMID AT FRZ LVL	52	4
Highest freezing level height	HIGHEST FREEZE LVL	7	204
Pressure in boundary layer	PRESS IN BNDRY LYR	1	116
(30 mb mean)			
Temperature in boundary layer	TEMP IN BNDRY LYR	11	116
(30 mb mean)			
Potential temperature in boundary	POT TMP IN BNDRY LYR	13	116
layers (30 mb mean)			
Dew point temperature in	DWPT IN BNDRY LYR	17	116
boundary layer (30 mb mean)			
Specific humidity in boundary	SPC HUM IN BNDRY LYR	51	116
layer (30 mb mean)			
RH in boundary layer	REL HUM IN BNDRY LYR	52	116
(30 mb mean)			
Moisture convergence in	MST CNV IN BNDRY LYR	135	116
boundary layer (30 mb mean)			
Precipitable water in boundary	P WATER IN BNDRY LYR	54	116
layer (30 mb mean)			
Y Y 1 1 1		22	110
U wind in boundary layer	U WIND IN BNDRY LYR	33	116
(30 mb mean)		24	11(
V wind in boundary layer	V WIND IN BNDRY LYR	34	116
(30 more in hour damy layer		20	116
(30 mb mean)	OWIEGA IN BINDRY LYR	39	110
Visibility	VISIDII ITV	20	1
Visionity Vegetation type	VEGETATION TVDE	20	1
Soil type	SOU TYPE	223	1
Conony conductance	SOIL TIPE	181	1
DPL height	DDI HEIGHT	221	1
FDL lieight		221	1
Slope type Snow donth	SLOPE I I PE	66	1
Liquid coil moisture	LIQUID SOIL MOISTURE	00	1
Snow free albeds	SNOW EDEE ALDEDO	100	112
Show free albedo	SNUW FREE ALBEDU	1/0	1
Iviaximum snow albedo	INIAAIMUWI SINUW ALBEDU	139	1
Direct coil even suction	DIDECT SOUL EVAD	200	1
Direct soll evaporation	DIKEUI SUIL EVAP	199	1
Plant transpiration	PLANT IKANSPIKATION	210	1
Snow sublimation	SNUW SUBLIMATION	198	1

Air dry soil moisture	AIR DRY SOIL MOIST	231	1
Soil moist porosity	SOIL MOIST POROSITY	240	1
Minimum stomatal resistance	MIN STOMATAL RESIST	203	1
Number of root layers	NO OF ROOT LAYERS	171	1
Soil moist wilting point	SOIL MOIST WILT PT	219	1
Soil moist reference	SOIL MOIST REFERENCE	230	1
Canopy conductance - solar	CANOPY COND SOLAR	246	1
component			
Canopy conductance -	CANOPY COND TEMP	247	1
temperature component			
Canopy conductance - humidity	CANOPY COND HUMID	248	1
component			
Canopy conductance - soil	CANOPY COND SOILM	249	1
component			
Potential evaporation	POTENTIAL EVAP	145	1
Heat diffusivity on sigma surface	DIFFUSION H RATE S S	182	107
Surface wind gust	SFC WIND GUST	180	1
Convective precipitation rate	CONV PRECIP RATE	214	1
Radar reflectivity at certain above	RADAR REFL AGL	211	105
ground heights*			
MAPS Sea Level Pressure	MAPS SLP	2	102
Total soil moisture	TOTAL SOIL MOISTURE	86	112
Plant canopy surface water	PLANT CANOPY SFC WTR	223	1
Accumulated storm surface runoff	ACM STORM SFC RNOFF	235	1
Accumulated baseflow runoff	ACM BSFL-GDWR RNOFF	234	1
Fraction of frozen precipitation	FROZEN FRAC CLD SCHM	194	1
GSD Cloud Base pressure	GSD CLD BOT PRESSURE	1	2
GSD Cloud Top pressure	GSD CLD TOP PRESSURE	1	3
Averaged temperature tendency	AVE GRDSCL RN TMPTDY	241	109
from grid scale latent heat release			
Averaged temperature tendency	AVE CNVCT RN TMPTDY	242	109
from convective latent heat			
release			
Average snow phase change heat	AVE SNO PHSCNG HT FX	229	1
flux			
Accumulated potential	ACC POT EVAPORATION	228	1
evaporation			
Highest freezing level relative	HIGHEST FRZ LVL RH	52	204
humidity			
Maximum wind pressure level	MAX WIND PRESS LEVEL	1	6
Maximum wind height	MAX WIND HGHT LEVEL	7	6
U-component of maximum wind	U COMP MAX WIND	33	6
V-component of maximum wind	V COMP MAX WIND	34	6
GSD cloud base height	GSD CLD BOT HEIGHT	7	2
GSD cloud top height	GSD CLD TOP HEIGHT	7	3

GSD visibility	GSD VISIBILITY	20	1
Wind energy potential	INSTN WIND POWER AGL	126	105
U wind at 80 m above ground	U WIND AT 80M AGL	49	105
V wind at 80 m above ground	V WIND AT 80M AGL	50	105
Graupel on model surface	GRAUPEL ON MDL SFCS	179	109
Graupel on pressure surface	GRAUPEL ON P SFCS	179	100
Maximum updraft helicity	MAX UPDRAFT HELICITY	236	106
Maximum 1km reflectivity	MAX 1km REFLECTIVITY	235	105
Maximum wind speed at 10m	MAX 10m WIND SPEED	229	105
Maximum updraft vertical	MAX UPDRAFT VERT VEL	237	101
velocity			
Maximum downdraft vertical	MAX DNDRAFT VERT VEL	238	101
velocity			
Mean vertical velocity	MEAN VERT VEL	40	108
Radar echo top in KDT	ECHO TOPS IN KFT	7	105
Updraft helicity	UPDRAFT HELICITY PRM	227	106
Column integrated graupel	VERT INTEG GRAUP	179	200
Column integrated maximum	MAX VERT INTEG GRAUP	228	200
graupel			
U-component of 0-1km level	U COMP 0-1 KM SHEAR	230	106
wind shear			
V-component of 0-1km level	V COMP 0-1 KM SHEAR	238	106
wind shear			
U-component of 0-6km level	U COMP 0-6 KM SHEAR	239	106
wind shear			
V-component of 0-6km level	V COMP 0-6 KM SHEAR	241	106
wind shear			
Total precipitation accumulated	BUCKET TOTAL PRECIP	61	1
over user-specified bucket			
Convective precipitation	BUCKET CONV PRECIP	63	1
accumulated over user-specified			
bucket			
Grid-scale precipitation	BUCKET GRDSCALE PRCP	62	1
accumulated over user-specified			
bucket			
Snow accumulated over user-	BUCKET SNOW PRECIP	65	1
specified bucket		121	100
Model level fraction of rain for	F_rain ON MDL SFCS	131	109
Ferrier's scheme		122	100
Model level fraction of ice for	F_ice ON MDL SFCS	132	109
Ferrier's scheme		122	100
Model level riming factor for	F_KIMEF ON MDL SFCS	133	109
Ferrier's scheme		125	100
Model level total condensate for	CONDENSATE MDL SFCS	135	109
Ferrier's scheme			

Height of sigma surface	HEIGHT OF SIGMA SFCS	7	107
Temperature on sigma surface	TEMP ON SIGMA SFCS	11	107
Specific humidity on sigma	SPEC HUM ON S SFCS	51	107
surface			
U-wind on sigma surface	U WIND ON SIGMA SFCS	33	107
V-wind on sigma surface	V WIND ON SIGMA SFCS	34	107
Omega on sigma surface	OMEGA ON SIGMA SFCS	39	107
Cloud water on sigma surface	CLOUD WATR ON S SFCS	153	107
Cloud ice on sigma surface	CLOUD ICE ON S SFCS	58	107
Rain on sigma surface	RAIN ON S SFCS	170	107
Snow on sigma surface	SNOW ON S SFCS	171	107
Condensate on sigma surface	CONDENSATE ON S SFCS	135	107
Pressure on sigma surface	PRESS ON SIG SFCS	1	107
Turbulent kinetic energy on sigma	TRBLNT KE ON S SFCS	158	107
surface			
Cloud fraction on sigma surface	CLD FRAC ON SIG SFCS	71	107
Graupel on sigma surface	GRAUPEL ON S SFCS	179	107
LCL level pressure	LIFT PCL LVL PRESS	141	116
LOWEST WET BULB ZERO	LOW WET BULB ZERO HT	7	245
HEIGHT			
Leaf area index	LEAF AREA INDEX	182	1
Accumulated land surface model	ACM LSM PRECIP	154	1
precipitation			
In-flight icing	IN-FLIGHT ICING	186	100
Clear air turbulence	CLEAR AIR TURBULENCE	185	100
Wind shear between shelter level	0-2000FT LLWS	136	106
and 2000 FT			
Ceiling	CEILING	7	215
Flight restriction	FLIGHT RESTRICTION	20	2
Instantaneous clear sky incoming	INSTN CLR INC SFC SW	161	1
surface shortwave			
Pressure level riming factor for	F_RimeF ON P SFCS	133	100
Ferrier's scheme			
Model level vertical velocity	W WIND ON MDL SFCS	40	109
Brightness temperature	BRIGHTNESS TEMP	213	8
Average albedo	AVE ALBEDO	84	1
Ozone on model surface	OZONE ON MDL SFCS	154	109
Ozone on pressure surface	OZONE ON P SFCS	154	100
Surface zonal momentum flux	SFC ZONAL MOMEN FX	124	1
Surface meridional momentum	SFC MERID MOMEN FX	125	1
flux			
Average precipitation rate	AVE PRECIP RATE	59	1
Average convective precipitation	AVE CONV PRECIP RATE	214	1
rate			
Instantaneous outgoing longwave	INSTN OUT TOA LW RAD	212	8

at top of atmosphere			
Total spectrum brightness	BRIGHTNESS TEMP NCAR	118	8
temperature			
Model top pressure	MODEL TOP PRESSURE	1	8
Composite rain radar reflectivity	COMPOSITE RAIN REFL	165	200
Composite ice radar reflectivity	COMPOSITE ICE REFL	166	200
Composite radar reflectivity from	COMPOSITE CONV REFL	167	200
convection			
Rain radar reflecting angle	RAIN RADAR REFL AGL	165	105
Ice radar reflecting angle	ICE RADAR REFL AGL	166	105
Convection radar reflecting angle	CONV RADAR REFL AGL	167	105
Model level vertical velocity	W WIND ON P SFCS	40	100
Column integrated super cool	TOTAL COLD LIQUID	168	200
liquid water			
Column integrated melting ice	TOTAL MELTING ICE	169	200
Height of lowest level super cool	COLD LIQ BOT HEIGHT	7	253
liquid water			
Height of highest level super cool	COLD LIQ TOP HEIGHT	7	254
liquid water			
Richardson number planetary	RICH NO PBL HEIGHT	7	220
boundary layer height			
Total column shortwave	TOT COL SW T TNDY	250	200
temperature tendency			
Total column longwave	TOT COL LW T TNDY	251	200
temperature tendency			
Total column gridded temperature	TOT COL GRD T TNDY	241	200
tendency			
Total column convective	TOT COL CNVCT T TNDY	242	200
temperature tendency			
Radiative flux temperature	RADFLX TMP TNDY ON P	216	100
tendency on pressure level		125	• • • •
Column integrated moisture	TOT COL MST CNVG	135	200
convergence		201	1
I ime averaged clear sky	AVE CLR INC UV-B SW	201	1
incoming UV-B shortwave		200	1
Time averaged incoming UV-B	AVE INC UV-B SW	200	1
snortwave	TOT COL OZONIE	10	200
l otal column ozone	IUI CUL UZUNE	10	200
Average low cloud fraction	AVE LOW CLOUD FRAC	/1	214
Average mid cloud fraction	AVE MID CLOUD FRAC	/1	224
Average high cloud fraction	AVE HIGH CLOUD FRAC	/1	234
Average low cloud bottom	AVE LOW CLOUD BOI P		212
pressure		1	212
Average low cloud top pressure	AVE LOW CLOUD TOP P		213
Average low cloud top	AVE LOW CLOUD TOP T	11	213

temperature			
Average mid cloud bottom	AVE MID CLOUD BOT P	1	222
pressure			
Average mid cloud top pressure	AVE MID CLOUD TOP P	1	223
Average mid cloud top	AVE MID CLOUD TOP T	11	223
temperature			
Average high cloud bottom	AVE HIGH CLOUD BOT P	1	232
pressure			
Average high cloud top pressure	AVE HIGH CLOUD TOP P	1	233
Average high cloud top	AVE HIGH CLOUD TOP T	11	233
temperature			
Total column relative humidity	TOT COL REL HUM	52	200
Cloud work function	CLOUD WORK FUNCTION	146	200
Temperature at maximum wind	MAX WIND TEMPERATURE	11	6
level			
Time averaged zonal gravity	AVE Z GRAVITY STRESS	147	1
wave stress			
Time averaged meridional gravity	AVE M GRAVITY STRESS	148	1
wave stress			
Average precipitation type	AVE PRECIP TYPE	140	1
Simulated GOES 12 channel 2	GOES TB – CH 2	213	8
brightness temperature			
Simulated GOES 12 channel 3	GOES TB – CH 3	214	8
brightness temperature			
Simulated GOES 12 channel 4	GOES TB – CH4	215	8
brightness temperature			
Simulated GOES 12 channel 5	GOES TB – CH5	216	8
brightness temperature			
Cloud fraction on pressure surface	CLD FRAC ON P SFCS	71	100
U-wind on theta surface	U WIND ON THETA SFCS	33	113
V-wind on theta surface	V WIND ON THETA SFCS	34	113
Temperature on theta surface	TEMP ON THETA SFCS	11	113
Potential vorticity on theta surface	PV ON THETA SFCS	4	113
Montgomery streamfunction on	M STRMFUNC ON THETA	37	113
theta surface			
	S STAB ON THETA SFCS	19	113
Relative humidity on theta surface	RH ON THETA SFCS	52	113
U wind on constant PV surface	U WIND ON PV SFCS	33	117
V wind on constant PV surface	V WIND ON PV SFCS	34	117
Temperature on constant PV	TEMP ON PV SFCS	11	117
surface			
Height on constant PV surface	HEIGHT ON PV SFCS	7	117
Pressure on constant PV surface	PRESSURE ON PV SFCS	1	117
Wind shear on constant PV	SHEAR ON PV SFCS	136	117
surface			

Planetary boundary layer cloud PBL CLD FRACTION 71		71	211
fraction			
Average water runoff	AVE WATER RUNOFF	90	1
Planetary boundary layer regime	PBL REGIME	220	1
Maximum 2m temperature	MAX SHELTER TEMP	15	105
Minimum 2m temperature	MIN SHELTER TEMP	16 10.	
Maximum 2m RH	MAX SHELTER RH	218	105
Minimum 2m RH	MIN SHELTER RH	217	105
Ice thickness	ICE THICKNESS	92	1
Shortwave tendency on pressure	SW TNDY ON P SFCS	250	100
surface			
Longwave tendency on pressure	LW TNDY ON P SFCS	251	100
surface			
Deep convective tendency on	D CNVCT TNDY ON P SF	242	100
pressure surface			
Shallow convective tendency on	S CNVCT TNDY ON P SF	244	100
pressure surface			
Grid scale tendency on pressure	GRDSCL TNDY ON P SFC	241	100
surface			
	VDIFF MOIS ON P SFCS	249	100
Deep convective moisture on	D CNVCT MOIS ON P SF	243	100
pressure surface			
Shallow convective moisture on	S CNVCT MOIS ON P SF	245	100
pressure surface			
Ozone tendency on pressure	OZONE TNDY ON P SFCS	188	100
surface			
Mass weighted potential vorticity	MASS WEIGHTED PV	139 100	
Simulated GOES 12 channel 3	GOES BRIGHTNESS-CH 3	H 3 221 8	
brightness count			
Simulated GOES 12 channel 4	GOES BRIGHTNESS-CH 4	222	8
brightness count			
Omega on theta surface	OMEGA ON THETA SFCS	39	113
Mixing height	MIXHT HEIGHT	67	1
Average clear-sky incoming	AVE CLR INC SFC LW	163	1
longwave at surface			
Average clear-sky incoming	AVE CLR INC SFC SW	161	1
shortwave at surface			
Average clear-sky outgoing	AVE CLR OUT SFC LW	162	1
longwave at surface			
Average clear-sky outgoing	AVE CLR OUT TOA LW	162	8
longwave at top of atmosphere			
Average clear-sky outgoing	AVE CLR OUT SFC SW	160	1
shortwave at surface			
Average clear-sky outgoing	AVE CLR OUT TOA SW	160	8
shortwave at top of atmosphere			

Average incoming shortwave at	AVE INC TOA SW	204	8
top of atmosphere			
Transport wind u component	TRANSPORT U WIND	33	220
Transport wind v component	TRANSPORT V WIND	34	220
Sunshine duration	SUNSHINE DURATION	191	1
Field capacity	FIELD CAPACITY	220	1
ICAO height at maximum wind	ICAO HGHT MAX WIND	5	6
level			
ICAO height at tropopause	ICAO HGHT AT TROP	5	7
Radar echo top	RADAR ECHO TOP	240	200
Time averaged surface Visible	AVE IN SFC VIS SW BE	166	1
beam downward solar flux			
Time averaged surface Visible	AVE IN SFC VIS SW DF	167	1
diffuse downward solar flux			
Time averaged surface Near IR	AVE IN SFC IR SW BE	168	1
beam downward solar flux			
Time averaged surface Near IR	AVE IN SFC IR SW DF	169	1
diffuse downward solar flux			
Average snowfall rate	AVE SNOWFALL RATE	64	1
Dust 1 on pressure surface	DUST 1 ON P SFCS	240	100
Dust 2 on pressure surface	DUST 2 ON P SFCS	241	100
Dust 3 on pressure surface	DUST 3 ON P SFCS	242	100
Dust 4 on pressure surface	DUST 4 ON P SFCS	243	100
Dust 5 on pressure surface	DUST 5 ON P SFCS	244	100
Equilibrium level height	zht EQUIL LEVEL HEIGHT 7		247
Lightning	LIGHTNING	187 1	
Goes west channel 2 brightness GOES W TB – CH 2		241	8
temperature			
Goes west channel 3 brightness	GOES W TB – CH 3	242	8
temperature			
Goes west channel 4 brightness	GOES W TB – CH 4	243	8
temperature			
Goes west channel 5 brightness	GOES W TB – CH 5	244	8
temperature			
In flight icing from NCAR's	NCAR IN-FLIGHT ICING	168	100
algorithm			
Specific humidity at flight levels	SPE HUM AT FD HEIGHT	51	103
Virtual temperature based	TV CNVCT AVBL POT EN	202	1
convective available potential			
energy			
Virtual temperature based	TV CNVCT INHIBITION	201	1
convective inhibition			
Virtual temperature on model	VTEMP ON MDL SFCS	012	109
surfaces			
Virtual temperature on pressure	VTEMP ON PRESS SFCS	012	100

surfaces			
Virtual temperature on flight	VTEMP AT FD HEIGHTS	012	103
levels			
Ventilation rate	VENTILATION RATE	241	220
Haines index	HAINES INDEX	250	1
Pressure at flight levels	PRESS AT FD HEIGHTS	1	103
Time-averaged percentage snow	TIME AVG PCT SNW CVR	238	1
cover			
Time-averaged surface pressure	TIME AVG SFC PRESS	1	1
Time-averaged 10m temperature	TIME AVG TMP AT 10M	11	105
Time-averaged mass exchange	TAVG MASS EXCH COEF	185	1
coefficient			
Time-averaged wind exchange	TAVG WIND EXCH COEF	186	1
coefficient			
Temperature at 10m	TEMP AT 10 M	11	105
Maximum U-component wind at	U COMP MAX 10 M WIND	253	105
10m			
Maximum V-component wind at	V COMP MAX 10 M WIND	254	105
10m			
Simulated GOES 12 channel 2	GOESE TB-2 NON NADIR	213	8
brightness temperature with			
satellite angle correction			
Simulated GOES 12 channel 3	GOESE TB-3 NON NADIR	214	8
brightness temperature with			
satellite angle correction			
Simulated GOES 12 channel 4	GOESE TB-4 NON NADIR	215	8
brightness temperature with			
satellite angle correction			
Simulated GOES 12 channel 5	GOESE TB-5 NON NADIR	216	8
brightness temperature with			
satellite angle correction			
Simulated GOES 11 channel 2	GOESW TB-2 NON NADIR	241	8
brightness temperature with			
satellite angle correction			
Simulated GOES 11 channel 3	GOESW TB-3 NON NADIR	242	8
brightness temperature with			
satellite angle correction			
Simulated GOES 11 channel 4	GOESW TB-4 NON NADIR	243	8
brightness temperature with			
satellite angle correction			
Simulated GOES 11 channel 5	GOESW TB-5 NON NADIR	244	8
brightness temperature with			
satellite angle correction			
Simulated GOES 15 channel 5	GOES-15 NON-NADIR	118	109
brightness temperature with	(Levels $1-4 =$ Channels $2-5$)	(241-244)	
satellite angle correction			

Simulated GOES 13 channel 2	GOES-13 NON-NADIR	118	109
brightness temperature with	(Levels $1-4 =$ Channels $2-5$)	(237-240)	
satellite angle correction			
Simulated AMSR-E channel 9	AMSRE TB – CH 9	176	8
brightness temperature			
Simulated AMSR-E channel 10	AMSRE TB – CH 10	177	8
brightness temperature			
Simulated AMSR-E channel 11	AMSRE TB – CH 11	178	8
brightness temperature			
Simulated AMSR-E channel 12	AMSRE TB – CH 12	179	8
brightness temperature			
SSMI F13	E13 SSMI NON NADIR	118	109
(19H, 19V, 37H, 37V, 85H, 85V)	115 SSIVII NON-NADIK	(176-181)	
	(Levels 1-6)		
SSMI F14		118	109
(19H, 19V, 37H, 37V, 85H, 85V)	F14 SSMI NON-NADIR	(182-187)	
	(Levels 1-6)		
SSMI F15	F15 SSMI NON-NADIR	118	109
(19H, 19V, 37H, 37V, 85H, 85V)		(188-193)	109
	(Levels 1-6)	()	
SSMIS F16	E16 SEMIS NON NADID	118	109
(183H, 19H, 19V, 37H, 37V,	(Levels 1.7)	(194-200)	
85H, 85V)	(Levels 1-7)		
		110	100
SSMIS F17 (183H, 19H, 19V,	F17 SSMIS NON-NADIR	118	109
3/H, 3/V, 83H, 83V)	(Levels 1-7)	(201-207)	
SSMIS E18 (182H 10H 10V	()	110	100
37H 37V 85H 85V)	F18 SSMIS NON-NADIR	(208-214)	109
5711, 57 V, 6511, 65 V)	(Levels 1-7)	(200-214)	
SSMIS F19 (183H 19H 19V		118	109
37H 37V 85H 85V)	F19 SSMIS NON-NADIR	(215-221)	107
	(Levels 1-7)	(======================================	
SSMIS F20 (183H, 19H, 19V,		118	109
37H, 37V, 85H, 85V)	F20 SSMIS NON-NADIR	(222-228)	- • 7
	(Levels 1-7)		
MTSAT-1r imager channels 1-4	MTSAT1R NON-NADIR	118	109
(backup for mtsat2)	(Levels $1-4 =$ Channels $1-4$)		
MTSAT2 imager channels 1-4	MTSAT2 NON-NADIR	118	109
_	(Levels $1-4 = $ Channels $1-4$)		
Seviri brightness temperature	SEVIRI NON-NADIR	118	109

channels 5-11	(Levels 1-7 = Channels 1-7)	(230-236)	
Insat 3d brightness temperature IR channels 1-4	INSAT 3D NON-NADIR (Levels 1-4 = Channels 1-4)	118	109

* See Appendix A

*** 4 types of CAPE and CIN can be output with use of the Levels control line in the *wrf_cntrl.parm (nmb_cntrl.parm file)*. Surface based CAPE/CIN is output at one grib record, while the remaining three types are output within one grib record in 3 levels.

Level 1: Surface Based CAPE/CIN Level 2: Best Boundary Layer CAPE/CIN Level 3: Mixed Layer CAPE/CIN Level 4: Most Unstable CAPE/CIN

Appendix A: UPPV3.1 Reflectivity field descriptions

Reflectivities are filled/computed depending on the model core and microphysics options.

UPP uses model derived reflectivity (REFL_10CM from WRF or NMM-B) for model runs using the Thompson microphysics option (mp=8). Other combinations use algorithms within UPP code.

Work is underway to provide more user flexibility when selecting reflectivity computations. For more information on model computed reflectivity, e.g. REFL_10CM, please see model documentation.

Relevant routines for reflectivity. Some or all of these may need to be modified if the user desires to change where/how reflectivity is processed. It is recommended that the user have knowledge of the model output and reflectivity computations before trying to modify the UPP code. Email upp-help@ucar.edu for further questions.

INITPOST*	- Separate routines for each different model core (e.g. ARW,
	NMM, NEMS, etc.). Reads model fields, e.g. REFL_10CM,
	REFD_MAX

- MDLFLD.f Computes DBZ or fills DBZ arrays with model computed Reflectivity. - Fills 3-D model level reflectivity array (UPP ID: 250)
 - Fills 2-D composite reflectivity array (UPP ID: 252)
- MDL2AGL.f Interpolates relevant DBZ array to AGL reflectivity (UPP ID: 253)

- Outputs model computed maximum hourly reflectivity (REFD_MAX; UPP ID: 421)

MDL2P.f - Interpolates relevant DBZ array to pressure levels (UPP ID: 251)

Acknowledgement

If significant help was provided via the UPP helpdesk for work resulting in a publication, please acknowledge the Developmental Testbed Center Mesoscale Modeling Team.

For referencing this document please use:

UPP Users' Guide V3.0, 34 pp. [available online at http://www.dtcenter.org/upp/users/docs/user_guide/V3/upp_users_guide.pdf]