National Aeronautics and Space Administration

Vehicle Integrated Propulsion Research (VIPR) III Volcanic Ash Ingestion Testing

AVT-272 Specialists Meeting on "Impact of Ash Clouds on Military Operations" May 15-17, 2017

> John D. Lekki and Mark R. Woike NASA Glenn Research Center

Clinton W. St. John and Michael W. Venti NASA Armstrong Flight Research Center

> Larry Mastin United States Geological Survey

www.nasa.gov

Cleared by Public Affairs 88ABW-2017-1464.

- Engines are highly reliable....however
- Engine malfunctions contributing to accidents and incidents do occur
- Ground-based testing may not identify problems occurring in-flight
- EHM is limited due to the harsh environment operational conditions
- Malfunction examples include
 - uncontained rotor failures
 - in-flight engine shutdowns
 - restricted thrust response
- Examples of underlying causes include
 - environmental effects such as volcanic ash and ice ingestion
 - turbomachinery damage
 - controls and accessory faults

Engine Failure Incident - June 2, 2006

Propulsion System Malfunction combined with Inappropriate Crew Response Accidents

• Engine tests provide rare and much needed opportunities to demonstrate propulsion health management technology

VIPR Overview

Vehicle Integrated Propulsion Research (VIPR) engine tests to support the R&D of Engine Health Management (EHM) Technologies to augment Aviation Safety

Engine testing is a necessary and challenging component of EHM technology development

Partnerships make it possible.

Partnerships:

- NASA
- Air Force
- Federal Aviation Administration
- Pratt & Whitney
- GE
- Rolls-Royce
- United States Geological Survey
- Boeing

Model-based gas path diagnostic architecture Prognostic Decision Making Acoustic Sensor Array

Ground Testing Overview

VIPR 1 (DECEMBER 2011): PERIPHERAL SENSORS

- SUCCESSFULLY INTEGRATED EXPERIMENTAL TECHNOLOGIES
- SELF DIAGNOSTIC ACCELEROMETER
- MODEL BASED DIAGNOSTICS
- EMISSIONS SENSORS

VIPR 2 (JULY 2013): INTEGRATED CORE SENSORS

- SUCCESSFULLY INTEGRATED EXPERIMENTAL TECHNOLOGIES
 - MICROWAVE BLADE TIP CLEARANCE SENSOR
 - THIN FILM PRESSURE SENSORS
- DETECTED & CHARACTERIZED INDUCED FAULT IMPACTS

VIPR 3 (2015): INTEGRATED ADVANCED & MATURED SENSORS

- INDUCED VOLCANIC ASH INGESTION RAPID ENGINE DEGRADATION
- DETERMINED CAPABILITY OF ADVANCED DETECTION
- CHARACTERIZED ENGINE PERFORMANCE [DIAGNOSTIC & PROGNOSTIC]
- IDENTIFIED FAULT MODALITIES

NASA Team Technologies Demonstrated

SENSOR SUITE

Accelerometer
Microwave Tip & Clearance Sensor
Fiber Optic Temperature Sensors
Thin Film Temperature Sensor
Pressure Sensors
Acoustic Signature Microphones
Self-Tuning Eng Model Diagnostics
High Temperature Fiber Optic Sensor

<u>CREW SAFETY</u> BLEED AIR SYSTEM VOLCANIC ASH INGESTION

Schlieren Imaging Particle Detection Probe

BENEFITS

Advanced Health Management

Advanced Diagnostics

Safety

Reliability

Enabling Prognosis & Prognostics For Life Management

Improved asset availability

Improved Fuel Efficiency

Volcanic Ash Testing

Characterize engine degradation effects due to simulated exposure to dispersed distal volcanic ash clouds

Cleared by Public Affairs 88ABW-2017-1464

Since the beginning of air travel, volcanic ash has been a hazard to flight.

- From 1952 to 2009, according to a recent study¹, there have been:
 - 129 incidents of planes flying into ash clouds
 - 79 with airframe or engine damage, i.e. about 2 per year since 1976, and
 - 9 with total engine shutdown during flight
- Some most significant encounters:
 - A Boeing 747 flying into an ash cloud at Galunggung Volcano, Indonesia, October 8, 1982, losing power to all four engines, dropping from 36,000 to 14,000 feet before restarting; and
 - A Boeing 747 flying into the ash cloud from Redoubt volcano, Alaska, December 15, 1989, losing power to all engines.

http://pubs.usgs.gov/ds/545/

¹Guffanti et al., 2010, U.S. Geological Survey Data series 545

From L. Mastin et al., Properties of Volcanic Ash used in VIPR III Engine Experiments, Aircraft Airworthiness and Sustainment, Grapevine, Texas, March 2016.

Inspection of KLM Jet in Anchorage following encounter at Redoubt volcano, December, 1989 Photo from Wikimedia Commons

For the engine tests, the USGS chose Mazama Ash

Crater Lake, Oregon

- This ash comes from southwestern Oregon
- It was produced 7,900 years ago during the eruption that created Crater Lake, shown in this photo
- · It is the largest eruption in the Western U.S. in the past 10,000 years
- The ash used in the VIPR tests was quarried from Chemult, Oregon, about 50 miles northeast of Crater Lake
- Rationale for its selection and method of processing are presented in slides 10-14.

The viscosity of volcanic glass can vary by orders of magnitude

Processing the pumice

- Ash was processed by Powder Technology Incorporated of Arden Hills, Minnesota. Processing was paid for by Rolls Royce/Liberty Works
- Processing included:
 - Drying
 - Milling
 - Cyclone separation
- The final product was a powder with size range from about 5 to 100 microns

Size of milled final ash

Texture and Structure

- The <u>natural deposit</u> contained about
 - 10% mineral grains
 - 90% bubbly glass
- The <u>milled and processed</u> <u>ash</u> contained no mineral grains that we could find
- We think that most mineral grains were separated out during processing

Natural ash fragments from deposit

Milled and processed ash

- In real ash clouds crystals fall out first, leaving distal clouds enriched in glass.
- Distal clouds typically contain ash particles tens of microns in size or smaller.
- In these respects, the test ash resembles natural ash in clouds

Particle size Meters to microns Distance 0 km Microns to tens of microns 1,000 km

- The right-side plot shows the viscosity of this glass relative to other volcanic glasses that have been involved in ash-aircraft encounters
- This viscosity of the test glass is within the range for these other volcanic glasses
- At an operating temperature of 1100° Celsius, viscosities of all these glasses are well below the threshold of about 10⁸ Pascal seconds, below which ash should soften and coat engine parts.
- We are therefore confident that softening occurred during testing.
- No single type of ash is representative of all volcanic materials
- Ash viscosity, the primary factor that determines softening within an engine, can vary over several orders of magnitude.
- The Mazama Ash, used in the VIPR-III engine tests, lies within the range of viscosity of volcanic materials known to have been involved in past aircraft encounters.

VADR Development - Early Work with Calspan and DNA

- Volcanic Ash Distribution Rig (VADR)
- 1980's-90's Calspan was contracted to support the Defense Nuclear Agency (DNA; 1971-1996) conducting research on various turbine engines for:
 - Volcanic ash
 - Nuclear dust effects
- Facilities were developed/used at both:
 - Calspan NY
 - Edwards AFB CA
- This data was not readily available nor time allotted for review prior to conducting NASA Vehicle Integrated Propulsion Research (VIPR)
- ~25 Papers related to Calpsan/DNA work were found during and post VIPR and in review regarding previous testing

VADR Development -Calspan Dust Injection vs Edwards AFB Test Cell

NASA

- Fan face concept used bell mouth inlet
- Ingestion rakes were part of bell mouth inlet
- Belt feed technique utilized

- Auger feed system used in lieu of belt feed
- Similar feed to what was used in VIPR III

Baran/Dunn. DNA-TR-92-The Response of a YF101-GA-100 Engine to a "Most Probable" Nuclear Dust Environment (U), 1992

VADR Development - Early Considerations VIPR Fan Face Low Pressure Compressor Injection

KSU fan face concept (included ash in the bypass)

- Core loading uncertain
- Possible damage to nacelle and aircraft
- Decoupled engine rig/engine motion
- Possible distortion and stall recovery issues

Booster injection

- Core loading known
- Undesired circumferential variation in ash induced damage
- Difficult to integrate into nacelle

- Previous concepts more along the lines of what might be accommodated in test cell environments
- Arnold Engineering Development Center (AEDC) was considered but too costly for single test with all other VIPR research
- Impacts to AEDC and clean up may have been too cumbersome
- VIPR team met at National Museum of the Air Force in late 2013 to discuss possible options for core only controlled ingestion
- <u>Pathway</u> was needed for OEMs and NASA to work seamlessly on VADR components and integration

VADR Development - Chicken Scratch to Concept

Modeling and Preliminary Analysis Confirm Controlled Flow into the Core Stream

- Good news
 - ✓ The ash will flow into the core stream
 - ✓ Ash flow is controllable
 - ✓ The engine will run unabated by the SPIDER/VADR installed in the inlet
- Not so good news
 - Found a few structural bumps but overall the concept indicated the idea will work
 - ✓ SPIDER legs went from 4 to 3 legs to ensure upsets in airflow were minimized

Cleared by Public Affairs 88ABW-2017-1464

Integration

Hangar Checkout

Aircraft Research Station Layout

Aircraft Research Station Layout (Forward looking Aft)

Aircraft Research Station Layout (Aft Looking Forward)

Test Site Integration

Volcanic Ash Ingestion Setup

Support Equipment Layout

Test Location

Combined Systems Test Operations

On Engine Installation & Testing

Volcanic Ash Ingestion Setup

Test Operations

Overview

NOTES

- •LOW RATE IS A TARGET CONCENTRATION
 - ~1MG/M³ ≈ .11 GM/SEC FEED RATE
- •HIGH RATE IS A TARGET CONCENTRATION
 - ~10mg/M3 ≈ 1.1 gm/sec feed rate
- •BASELINE ENGINE INSPECTION

•INDUSTRY AND GOVERNMENT EVALUATIONS

- •FORWARD AND AFT COMPRESSOR
- •ENTIRE TURBINE WAS SELECTED

•FINDINGS

•AFT COMPRESSOR, BURNER SECTION & FORWARD TURBINE

•MOST CRITICAL •CONTROL LINES (PB/P4.9)

High Pressure Turbine – HPT High Pressure Compressor – HPC Fuel Nozzle – FN Stage of Compressor – SC Trailing Edge – TE Leading Edge – LE Combustor Liner - CL

Original Focus Areas For Inspection

- Forward Compressor
- Aft Compressor
- Combustor
- All Stages of Turbine

- Combustor
- Forward Stage of HPT

Test Execution Sequence:

- July 14: Engine water wash conducted to remove any dirt or fouling from engine turbomachinery prior to commencing ash ingesting testing
- July 22: Calibration run conducted to establish baseline engine performance level
- July 23: SPIDER and Ash spray nozzle array installation and checkout test
- July 28 Aug 5: Five (5) days of ash ingestion testing conducted

Run duration and amount of ash ingested in

engine over 5 days of ash ingestion testing **Daily Ash Daily Ash** Target Run Date Concentration **Ingested Run** Ingested # (mg/m^3) Time (min) Mass (kg) 28-Jul-15 90 0.730 1 1 2 29-Jul-15 1 68 0.549 3 31-Jul-15 1 269 2.1564 04-Aug-15 10 175 11.017 5 05-Aug-15 10 235 14.465

Date	Target Rate	Ash Flow Duration	Initial Ash Wt	Ash out during auger prime	Ash added during test	Ash augered out post- test	Actual Rate	Total Ash Delivered
	g/sec	minutes	g	g	g	g	g/sec	wt
28-Jul-15	0.1	90	2991	40	0	2221	0.14	730
29-Jul-15	0.1	68	3014	39	0	2426	0.13	549
31-Jul-15	0.1	269	2967	35	1000	1776	0.13	2156
4-Aug-15	1	175	2998	57	8977	901	1.05	11017
5-Aug-15	1	235	3001	64	12449	921	1.03	14465
All Tests Sum:	N/A	837	N/A	N/A	N/A	N/A		28917

 \checkmark \checkmark

ENGINE ASH INGESTION OBSERVATIONS 5 DAYS OF ENGINE TESTS

Summary – Compressor Degradation

98 Jul 98 92:50

Run 2

Run 3

High Concentration

Low Concentration

Cleared by Public Affairs 88ABW-2017-1464

Observations – Compressor Degradation

Baseline

No issues observed with blades or vanes

Run 1 (low concentration)

- HPC very clean, no obvious wear or discoloration
- Mild ash accumulation on 10th stage bleed cap

Run 2 (low concentration)

• No noticeable changes

Run 3 (low concentration)

• No noticeable changes

Run 4 (high concentration)

No degradation observed

Run 5 (high concentration)

No degradation observed

Note: Some degradation later observed in compressor during engine teardown. Will be discussed in next section of presentation.

Summary – Combustor Degradation

Baseline

Run 1

Run 2

Run 3

Low Concentration

Post Water Wash

Cleared by Public Affairs 88ABW-2017-1464

Observations – Combustor Degradation

Baseline

Baseline state looks clean

Run 1 (low concentration)

No major changes from baseline

Run 2 (low concentration)

• No major changes from baseline

Run 3 (low concentration)

- Shedding material starting to show up in combustor area
- Other areas around the fuel nozzle show some very local ash accumulation

Run 4 (high concentration)

Showing large thin flakes of ash shedding

Run 5 (high concentration)

• Similar to first high flow run day (Run 4) showing large thin flakes of ash shedding

Summary – First Stage Turbine Vane Degradation

Cleared by Public Affairs 88ABW-2017-1464

Observations – First Stage Turbine Vane Degradation

Baseline

No issues with vanes, No appearance of coating or alloy burning

Run 1 (low concentration)

- No evidence of ash accumulation on turbine parts
- Slight plugging of cooling holes in first stage turbine vane
- Cooling air still flowing, not a concern to continue running

Run 2 (low concentration)

- Slight ash seen on first vane leading edge
- No ash seen on gauge point area of 1st vane

Run 3 (low concentration)

- More build up
 - 1st vanes leading edge and forward pressure side
- Aft pressure side gauge area (A4)
 - No built up thus not reducing the gauge area

Run 4 (high concentration)

- 1st stage turbine vanes
 - Build up appears to be glassified ash as expected
 - Gauge point region, still not significantly closed down

Run 5 (high concentration)

- Build up and shedding looks similar to Run 4
 - Gauge area (A4) still not built up

Summary – 1st Stage Turbine Rotor Degradation

Run 2

Low Concentration

High

Wash

Run 5

Cleared by Public Affairs 88ABW-2017-1464

Observations – 1st Stage Turbine Rotor Degradation

NASA

Baseline

- TBC intact, no blade distress
- Darker areas on blades potentially soot from shutdown, no appearance of coating or alloy burning

Run 1 (low concentration)

No major changes from baseline

Run 2 (low concentration)

- No ash seen on first blade
- 1st blade outer edge seal leading edge region
 - May have small ash particles

Run 3 (low concentration)

- 1st stage blades , Still show very little effect of the ash
- Turbine ash accumulation is still very low

Run 4 (high concentration)

• 1st blades still are relatively clean but starting to show some accumulation

Run 5 (high concentration)

- Slight build up on some 1st blade leading edges
- Assume it's ash, but did not look "glassified"

ENGINE ASH INGESTION OBSERVATIONS POST TEST – ENGINE TEAR DOWN

- Fan/Fan Case
 - No indication of ash buildup in fan bypass, transitions, joints, or interfaces
 - Fan blade leading edges had slight change in roughness and rounding
- Low Pressure Compressor
 - 1st stage LPC appeared to have surface finish changes between blade platforms, 5th stage LPC contained blades with trailing edge tip distress and polishing
 - Ash accumulation on outer side of flanges
- High Pressure Compressor
 - All blades and stator vane assemblies were "polished" on the outer 1/4 1/3 span
 - 8th stage HPC wear at leading edge tips
 - 11th stage HPC wear at trailing edge tips
 - Variable stator segments (6th- 10th stages) were "stiff", normally smooth when turning by hand
 - Blade Outer Air Seals (BOAS) intact for forward stators (6th 10th stages)
 - Blue tinting appearing on metal disk stages 10-17, with heaviest notes on 14th and 15th
 - HPC exit stators contain leading edge distress extending radially outwards

- Combustor
 - Inner and outer combustor liner intact with no evidence of distress
 - Ash accumulation on inner and outer liner surfaces with additional build up in the outer cavity between the burner and diffuser case. Inner liner had a light tan ash deposits aft of the cooling holes
 - Green tint on outside wall of outer basket, increasing further aft
 - Combustor was more difficult to remove than typical
 - Glass-like deposits found at 6 o'clock position when engine held horizontal
 - Fuel nozzle air holes had significant ash build up but did not appear to obstruct air flow

- High Pressure Turbine
 - 1st Stage Vane Assemblies
 - Ash deposits of various transformations accumulated on most of the vanes and varied in thickness, reflectivity, color and coverage
 - Shedding appeared to have occurred multiple times at some locations
 - Some deposits were estimated to be 7-10 mm thick
 - Some of the heavier deposits completely covered leading edge cooling holes, preventing flow
 - Trailing edge surface accumulation was notably different in texture and color compared to leading edge buildup
 - Cooling circuit inner flow path appeared to be clear of ash

- High Pressure Turbine (continued)
 - 1st Stage Blades
 - Majority of leading edge of blades had sporadic blockage of cooling holes
 - Leading edges of blades exhibit mechanical impact erosion and some appear to have divots
 - The pressure side of the blades a matte tan color was evident
 - Various levels TBC spallation and removal observed throughout blades
 - Ash accumulation found in cooling passage at root but did not show plugging
 - Platform cooling holes were not plugged
 - Typical wear on outer edge BOAS

Teardown - Observations

- High Pressure Turbine Continued
 - 2nd Stage Vane Assemblies
 - No visual evidence of cooling flow blockage on vane and inner cooling flow path circuit is clean
 - Few vanes had TBC missing
 - 2nd Stage Blades
 - Blades were normal, unremarkable
 - Loose ash found on blades and blade roots
 - Heavy ash content found below the platform
 - Coating material on BOAS missing in blade path

ENGINE PERFORMANCE DATA – VOLCANIC ASH INGESTION

&

RESULTS – SELECT INDIVIDUAL SENSOR TECHNOLOGIES

Gas Path Diagnostics

Background:

 Analysis of gas path parameter measurements for performance monitoring, diagnostics, and prognostics

Benefits:

- Safety: Reduce propulsion system malfunction plus inappropriate crew response accidents
- Affordability: Reduce life cycle cost

Advances to state-of-the-art:

- Gas Path Diagnostics (GPD): Model-based approach for analysis of continuous full-flight data, improved diagnostic accuracy and reduced diagnostic latency.
- Prognostics and Decision Making (PDM): Accurate estimation and forecasting of remaining useful life.
- Information Fusion: Systematic approach for combining disparate information sources to produce a unified assessment of engine health

Aircraft engine performance deterioration mechanisms and gas path

fault types

Turbomachinery Deterioration

- Fouling
- Corrosion
- Erosion

Turbomachinery Faults

- Foreign object
- damage
 - Blade/Vane failure

- Sensor faults
- Actuator faults

OPR

RESULTS AND SIGNIFICANCE (Preliminary)

- Five (5) days of volcanic ash ingestion testing
 - Days 1, 2, and 3 ran low concentration ash ingestion
 - Days 4 and 5 ran higher concentration ash ingestion
- No significant engine performance variations were observed during low concentration ash runs
- On high ash concentration run days, discernable performance trend changes were observed in overall pressure ratio (OPR), fuel flow, compressor exit temperature, and exhaust gas temperature.
- Advanced sensor data tracks performance changes observed elsewhere in engine
 - Thin Film Thermocouple (TFT) trends with compressor exit temperature
 - High Temperature Fiber Optic Sensor (HTFOS) trends with exhaust gas temperature

Acoustic Detection of Faults Experienced by a High-Bypass Turbofan Engine

- Cumulative exposure to volcanic ash caused detectable changes in engine acoustics
- Spectral noise discontinuities evident during engine degradation as an apparent function of cumulative ash ingested by the engine
- Qualitatively demonstrated the feasibility of detecting certain faults
- Fault detection successful in the presence of numerous contaminating noise sources
- Could lead to a diagnostic tool capable of fault identification or engine health evaluation

Emissions Sensor Suite Volcanic Ash Testing

OBJECTIVE

 Demonstrate the ability to diagnose engine faults and performance loss effects using a multiparameter emission sensor array

APPROACH

- Engine Emission Monitoring System developed using selective microsensors and smart electronics
- Includes the capability to measure CO, CO2, O2, hydrocarbons, and NOx.
- Sensor suite mounted at engine exhaust and exposed to both nominal conditions and simulated faults, as well as volcanic ash

RESULTS AND SIGNIFICANCE

(Preliminary/Volcanic Ash)

- Emissions Sensor Array Monitored Engine Emissions during Days 1-3, 5 of Ash runs
- Days 1-3: Candidate "Steady-State" Emissions Parameter Identified
- Day 5 Deviation in "Steady State" Emissions Profile Suggestive of Change in Engine State During Heavy Volcanic Ash Deposition
 - Not Presently Explainable By Reference to Other Engine Parameters

Multiparameter Engine Exhaust Measurements Track Major Species

CO sensor

Sensor probe

Sensor probes in emissions testing rig manifold

Preliminary Emissions Data –

- Pattern Established Over Several Runs
- Deviations from Baseline Observed Suggesting Possible Volcanic Ash Effects

Performance of High Temperature Fiber Optic Sensor

OBJECTIVE

• Evaluate performance of a high temperature fiber optic sensor (HTFOS) and it responses to various engine operation conditions and the ash ingestion

APPROACH

- Develop silica-based HTFOS suitable for operation at engine exhaust temperatures
- Install the sensor in the exhaust plume behind the jet engine
- Evaluate the sensor performance in the engine exhaust plume under various engine operating and ash ingestion conditions. Compare results with the EGT sensor data.

RESULTS AND SIGNIFICANCE

- NASA GRC developed a HTFOS capable to withstand thermal and vibrational environments of the jet engine exhaust plume.
- NASA completed a series of tests of the HTFOS in the NASA AFRC facility in July 2015. The tests demonstrated operability of the sensor in the above mentioned environments.
- The results were close to those from the EGT sensors and clearly showed a path for incorporation the HTFOS into EGT ports inside the jet engine exhaust nozzle structure.

ESS with HTFOS installed behind the engine exhaust

EGT Sensor

Suggested Next Steps – Volcanic Ash Research

- Volcanic ash ingestion testing was successful
 - Engine did not degrade as much as originally expected
 - Good first step, but recognize more data is needed to provide better understanding of impact
- Volcanic ash questions still open
 - Determine the effect of volcanic ash cloud chemistry
 - Determine the effect of different ash compositions
 - Build model that predict VA buildup in different engines
 - Modeling of glass build-up & degradation like what has been done for icing
 - Understand the effect of VA on new N+3 materials and higher operating temperatures
 - Will ceramic parts shed ash similarly to metal parts?
 - Will ash build up in more sections of the engine due to higher temperature?
 - What is the effect of ash concentration?
 - Testing with different concentration levels, populate the database
 - Enhanced engine control and/or procedures on ash detection & recovery
- Fuel Efficiency
 - Leverage VIPR technologies to improve fuel efficiency
 - Can be leveraged into further Volcanic Ash and other Environmental Particulate FOD Research

VIPR 1, 2 and 3 Summary Testing complete: highly successful

Test Objectives:

Demonstrate capability of advanced health management technologies for detecting and diagnosing incipient engine faults before they become a safety impact and to minimize loss of capability

Approach:

Perform on wing engine ground tests

- Normal engine operations
- Seeded mechanical faults
- Seeded gas path faults
- Accelerated engine life degradation through volcanic ash ingestion testing
- VIPR 2 Test completed in July 2013
- VIPR 3 Test completed in August 2015

Overall Summary

- Overall Impact of VIPR Technologies
 - Efficiency Trends
 - Higher Thermal Efficiency and Overall Pressure Ratios implies potential need for:
 - Compressor and Turbine clearance control
 - Dynamic monitoring of gas path parameters
 - Active combustion control
 - Distributed engine control
 - Sensor packaging
 - Propulsive Efficiency
 - Larger Structures may require more extensive structural monitoring
 - Active tuning can compensate for degradation and maintain efficiency
 - Reliability and Safety impacts
 - New materials may require new monitoring technologies
 - Smart Sensor Systems
 - Active tuning can compensate for degradation and mitigate acceleration
 - Operations impacts
 - Slowing degradation acceleration has the potential to keep engines on wing longer
 - Volcanic ash engine degradation testing with IVHM augmented engine
 - Tests capability to detect volcanic ash affects in flight
 - Exercises the capability of IVHM systems for monitoring engine state
 - Adds to the knowledge base for operators to make better decisions in airspace with volcanic ash

• Paper titled "Volcanic Ash Ingestion Test of an Aircraft Turbofan Engine" to be released later this year.

• Questions?

Backup Slides

Gas Path Diagnostics

Gas Path Diagnostics (GPD) Tests: Engine will be operated nominally (fault-free) and with bleed valve faults (station 2.5 and 14th stage bleed valves) under the following test scenarios

- Baseline runs
- Steady-state runs
- Transient runs

Prognostics and Decision Making (PDM) Tests:

• Incrementally bias station 2.5 bleed valve off-schedule (towards failsafe OPEN position)

Data Acquisition and Analysis:

- Specified bill-of-material (BOM) and 2.5 probe measurements will be acquired and archived
- Limited on-board data analysis to compare fault-induced engine performance shifts against model predictions (Microsoft Excel spreadsheet)
- Post-test down-load and analysis of VIPR3 test data archived on Omega Data Environment (ODE) server
- Model-based diagnostic technique successfully detected and classified engine bleed faults introduced during test

Microwave Blade Tip Clearance Sensors

OBJECTIVE

Evaluate response to various engine operation conditions and ash ingestion

APPROACH

- Installed two sensors in the high pressure turbine
- Compare results with initial clearances measured at the build-up of the engine and analyze changes as ash ingestion progressed

RESULTS AND SIGNIFICANCE

- Preliminary results
 - individual blade-to-blade tip clearances were discernable
 - six (6) "marker" blades with known different lengths were detected

Self Diagnostic Accelerometer

Self Diagnostic Accelerometer System successfully provided

- vibration data
- health of the sensor
- sensor attachment condition

Results

 Pattern recognition software successfully discriminated all tight and loose conditions

Thin Film Thermocouple

OBJECTIVE

• Enable improved dynamic temperature measurements at higher temperatures using thin film sensor technology

APPROACH

- Thin film sensors have negligible mass, are minimally intrusive, and can be applied to a variety of materials including ceramics
- Two high temperature prototype thermocouple probe designs fabricated and demonstrated
- Each sensor probe design demonstrated different thin film thermocouple types and packaging approaches

SIGNIFICANCE

- Operation of thin film thermocouple sensor prototypes validated as installed in bleed-air borescope ports
- Sensors tracked dynamic engine temperature changes through multiple power cycles with faster response than embedded thermocouples
- Data included monitoring VAE performance trends
- Tracked performance changes were observed elsewhere in engine
- Application not limited to bleed-air borescope ports
- Part of information fusion to better understand the overall health state of the engine

Pressure Sensor with Electronics

OBJECTIVE

 Demonstrate the ability to measure engine conditions with a higher temperature pressure sensor integrated with electronics

APPROACH

- High temperature sensor coupled with: first generation high temperature smart sensor
- Integrate multiple components into a single package to provide a
 - Capacitive pressure sensor composed of silicon carbon nitride (SiCN)
 - Silicon carbide electronics and passive devices for sensor signal processing
 - Packaged system for insertion in borescope port

RESULTS AND SIGNIFICANCE

- Pressure sensor/electronics demonstrated in engine environment
- Data shows clear tracking of changes in engine operating conditions
- Provided communication of conditioned data (across a wire) using high temperature electronics.
- First step towards smarter high temperature sensor systems

Capacitive pressure sensor

High Temperature Electronics Circuit

Sensor probe with electronics

in Engine Conditions

60

How does ash damage engines?

- Much of our knowledge has come from descriptions of damage to the KLM Redoubt engines, published by Przedpelski and Casadevall (1994).
- In that study, they
 - Observed melted deposits coating the Stage I HPT and nozzle guide veins, as shown to the right.
 - They concluded that "The primary cause of engine thrust loss . . . was the accumulation of melted and resolidified ash on the stage-1turbine nozzle guide vanes."¹
- From this work, it is generally assumed that:
 - Ash softens, sticks to moving parts, and stops them from operating; and that
 - Softened ash clogs nozzle guide vane holes, causing heat damage

¹Przedpelski, Z. J., and T. J. Casadevall (1994), U.S. Geological Survey Bulletin 2047, edited by T. J. Casadevall, pp. 129-135.

Holes clogged with ash

Stage I HPT Nozzle guide vanes

KLM 747 engines following 1989 Redoubt encounter (figures from Przedpelski & Casadevall, 1994)

From L. Mastin et al., Properties of Volcanic Ash used in VIPR III Engine Experiments, Aircraft Airworthiness and Sustainment, Grapevine, Texas, March 2016.

Cleared by Public Affairs 88ABW-2017-1464

Ash properties differ from mineral dust and sand

- Ash is a mixture of *mineral crystals* and glass
 - Mineral crystals are solid at the operating temperature of most jet engines.
- Glass is <u>not a solid</u>. It is a liquid, with a very high viscosity.
 - With increasing temperature, its viscosity decreases as illustrated in the figure to the right
- We define a "critical viscosity" as one below which glass particles are soft enough to deform and coat engine parts, as illustrated below. Some studies¹ suggest this occurs at a viscosity near 10⁸ Pascal seconds

Pumice collection

