

Postprocessing at DWD:

subsampling the ensemble, recalibration, and statistical downscaling

C. Dalelane, A. Pasternack, P. Lorenz

Overview

Statistially Selected Seasonal Climate Prediction

Statistially Selected Seasonal Climate Prediction

Overview

2

3

Subsampling

Recalibration

Statistical Downscaling

Statistical Post-Processing with Recalibration

Recalibration of decadal predictions

- (decadal) probabilistic forecasts tend to be not reliable
- maximize sharpness without sacrificing reliability
- limited number of hindcasts
- climate trend
- dependence on lead years (drift)

Decadal forecast recalibration strategy (DeFoReSt)

$$f^{Cal}(t,\tau) = \mathcal{N}(\alpha(t,\tau) + \beta(t,\tau)\mu(t,\tau), \exp((\gamma(t,\tau) + \delta(t,\tau)\sigma(t,\tau))^2))$$

With: $\alpha(t,\tau) = \sum_{l=0}^{3} (a_{2l} + a_{(2l+1)}t)\tau^l \dots$ and $\beta(t,\tau), \gamma(t,\tau), \delta(t,\tau)$ analogously

Model selection with boosting

- boosting iteratively increases model coefficients
- most relevant parameters are increased first
- best set of coeff. can be found by cross validation (CV)
- thus, not relevant parameters are zero

Statistical Post-Processing with Recalibration

Recalibration of decadal predictions

- (decadal) probabilistic forecasts tend to be not reliable
- maximize sharpness without sacrificing reliability
- limited number of hindcasts
- climate trend
- dependence on lead years (drift)

Decadal forecast recalibration strategy (DeFoReSt) (Pasternack et al. 2018, 2021)

$$f^{Cal}(t,\tau) = \mathcal{N}(\alpha(t,\tau) + \beta(t,\tau)\mu(t,\tau), \exp((\gamma(t,\tau) + \delta(t,\tau)\sigma(t,\tau))^2))$$

With: $\alpha(t,\tau) = \sum_{l=0}^{3} (a_{2l} + a_{(2l+1)}t)\tau^l \dots$ and $\beta(t,\tau), \gamma(t,\tau), \delta(t,\tau)$ analogously

Model selection with boosting

- boosting iteratively increases model coefficients
- most relevant parameters are increased first
- best set of coeff. can be found by cross validation (CV)
- thus, not relevant parameters are zero

Climate predictions @DWD

Subseasonal Predictions

- IFS (extended range)
- 46 days simulations
- 20 years BP
- ensemble members:
 - forecasts: 5²
 - hindcasts: 1

~36 km

Seasonal Predictions

- GCFS2.1
- 6 month simulations
- 1990 today
- ensemble members:
 - forecasts: 50
 - hindcasts: 30
- ~100 km

Decadal Predictions

- MPI-ESM LR
- 10a simulations
- 1961 today
- 16 ensemble members
- ~200 km

Climate predictions @DWD

Subseasonal Predictions

- IFS (extended range)
- 46 days simulations
- 20 years BP
- ensemble members:
 - forecasts: 5²
 - hindcasts: 1

~36 km

Seasonal Predictions

- GCFS2.1
- 6 month simulations
- 1990 today
- ensemble members:
 - forecasts: 50
 - hindcasts: 30
- ~100 km

Decadal Predictions

- MPI-ESM LR
- 10a simulations
- 1961 today
- 16 ensemble members
- ~200 km

Decadal Prediction: lead year 1-5 \rightarrow 2m Temperature

Most relevant predictors: Location: Intercept, τ^1 , $\mu\tau^1$, t, $t\tau^1$

Scale: Intercept, τ^1 , $\sigma\tau^1$, $\sigma\tau^2$, $\sigma\tau^3$

Climate predictions @DWD

Subseasonal Predictions

- IFS (extended range)
- 46 days simulations
- 20 years BP
- ensemble members:
 - forecasts: 5²
 - hindcasts: 1

~36 km

Seasonal Predictions

- GCFS2.1
- 6 month simulations
- 1990 today
- ensemble members:
 - forecasts: 50
 - hindcasts: 30
- ~100 km

Decadal Predictions

- MPI-ESM LR
- 10a simulations
- 1961 today
- 16 ensemble members
- ~200 km

Seasonal Prediction for May: lead month 2-4 \rightarrow 2m Temperature

Raw MSESS RPSS

DeFoReSt vs Raw

Most relevant predictors: Location: Intercept, $\tau^1, \tau^2, \tau^3, \mu, \mu\tau^1, \mu\tau^2, \mu\tau^3$

Scale: Intercept, τ^1 , τ^2 , τ^3 , σ , $\sigma\tau^1$, $\sigma\tau^2$, $\sigma\tau^3$

t: Start year μ : Ens. Mean τ : Lead month σ : Ens Spread

06

Overview

1Subsampling2Recalibration3Statistical Downscaling

Empirical-Statistical downscaling: EPISODES

Target:

- → To provide a solid basement for regional impact modelers and decision makers
- Climate projections: Enlargement of the EURO-CORDEX ensemble (CMIP5, CMIP6)
- Climate predictions: Regionalization of global climate projections (decadal, seasonal, sub-seasonal)

Requirements (e.g. for hydrological models):

- → Transient daily data (1951-2100) in high spatial resolution
- → Spatial consistent for at least large river catchments
- ➔ Multivariate consistent
- ➔ No systematic deviations (Bias)

EPISODES

Data (daily values):

- → Gridded observations: HYRAS / TRY / COSMO-REA6 / ERA5-Land
- → Reanalysis data: NCEP/NCAR
- →GCM model output: e.g. CMIP5, CMIP6, GCFS2, IFS, ...

Step 1: Analogue day regression

- → Detection of analogue days and regression ("Perfect Prog")
- Based on large scale atmospheric (Geopotential, Temperature und rel. Humidity in 1000, 850, 700 und 500 hPa)

Step 2: Time series construction

From the results of step 1, a synthetic time series is created in resolution of the used observation data

Selector and predictor fields

For each variable and season

Two selector variables:

for detection of the 35 most similar days from the reanalyses for each day of GCM data ("Perfect Prognosis" approach):

➔ Target variables: tas, pr, tasmin, tasmax, hurs.

Predictor variable: for posterior linear regression

From Germany to DACH region – co-operarion with ZAMG (work in progress)

- Regionalisation of selector and predictor variables (implemented by ZAMG)
- Cross validation for determination of optimal selectors/predictors for DACH region

Step 2: Construction of the daily time series

- → Calculation of the short-term variability "V":
 - → GCM: Difference between the results of the regression (step 1) and the low-pass filtered "Climate change guidance G"
 - → Observations: Difference to climatology (C)
 - → Based on the short-term variability (V) of temperature and precipitation, the most similar day from the observations is detected for each day of the GCM data. This day is then used for all variables.
- \rightarrow The final value is calculated as the sum of C + G + V_{obs} :
 - C : daily climatology (observations)
 - G : climate change guidance: low-pass filtered results of the regression (step 1)
 - V_{obs} : short-term variability of the detected day from the observations

Currently used EPISODES model domain

Deutscher Wetterdienst

EPISODES output

- → Gridded data on HYRAS-5km or CORDEX-EUR11 grid (appr. 12.5km), up to now only grid points within Germany
- → Temporal resolution: daily
- → Elements:

→tas	 2m daily mean temperature
→tasmin	 2m daily minimum temperature
→tasmax	 2m daily maximum temperature
→ pr	 daily precipitation sum
→hurs	 daily mean 2m relative humidity
→rsds	- daily mean downward solar radiation
→clt	 daily mean cluod cover
→sfcWind	 daily mean wind speed (10m)

→psl – daily mean sea level pressure

Thank you very much for your attention!