Indirect Effects: Aerosol and Cloud Microphysics

Ulrike Lohmann

Institute for Atmospheric and Climate Science, Swiss Federal Institute of Technological (ETH), Zurich, Switzerland

IPCC Expert Meeting on Aerosols, Geneva, May 2, 2005

Outline

• What are aerosol indirect effects?

- Twomey effect
- Cloud lifetime effect
- Semi-direct effect
- Evidence of the different indirect aerosol effects from field studies
- Estimates of global mean indirect aerosol effects
- Conclusions

Indirect aerosol effects on climate

Penner et al., IPCC, 2001

Different aerosol effects on water clouds

- Cloud albedo effect (pure forcing)
 - for a constant cloud water content, more aerosols lead to more and smaller cloud droplets → larger cross sectional area → more reflection of solar radiation
- Cloud lifetime effect (involves feedbacks)
 - the more and smaller cloud droplets will not collide as efficiently → decrease drizzle formation → increase cloud lifetime → more reflection of solar radiation
- Semi-direct effect (involves feedbacks)
 - absorption of solar radiation by black carbon within a cloud increases the temperature → decreases relative humidity → evaporation of cloud droplets → more absorption of solar radiation (opposite sign)

Cloud evolution in a clean and polluted atmosphere

Shiptracks off the coast of Washington

Durkee et al., 2000

Evidence for the cloud albedo effect

Durkee et al., JAS, 2000

Top-of-the-atmosphere global-mean radiative forcing (W m⁻²) for 2000 relative to 1750 [IPCC, 2001]

Estimate of the total radiative (aerosol and nonaerosol) forcing since pre-industrial times

Boucher and Haywood, Clim. Dyn., 2001

Summary of aerosol forcing estimates [Anderson et al., Science, 2003]

Example of an inverse simulation [Knutti et al., 2002]

Simulated relation between climate sensitivity ($\Delta T/2xCO_2$) and atmospheric and oceanic warming: a) global ocean heat uptake from 1955-1995 in the upper 3 km b) atmospheric temperature from 1900-2000

Probability density functions of the global mean indirect effect:

d) not constrained
e) contrained by observed T
record
f) also constrained by the IPCC
climate sensitivity

How are aerosol effects on clouds simulated in climate models?

- Predict aerosol mass concentrations:
 - *sources* (aerosol emissions of the major aerosol species: sulfate, black carbon, organic carbon, sea salt, dust)
 - *transformation* (dry and wet deposition, chemical transformation and transport)
- Need a good description of cloud properties:
 - *precipitation formation* (collision/coalescence of cloud droplets and ice crystals, riming of snow flakes)
- Need to parameterize aerosol-cloud interactions:
 - *cloud droplet nucleation* (activation of hygroscopic aerosol particles)
 - *ice crystal formation* (contact and immersion freezing, homogeneous freezing in cirrus clouds)

Global annual mean aerosol emissions (representative for 1985)

Aerosol mass resulting from human activity

Sulfate [mg S/m2]

Organic Carbon [mg C/m2]

Cloud microphysical processes in a climate model

Aerosol - cloud droplet relationships

Temporal evolution of sulphur emission and direct and indirect radiative forcing of sulfate aerosols

Boucher and Pham, GRL, 2002 Top panel: Direct effect of sulphate aerosols (-0.4 W/m²)

Lower panel: Indirect cloud albedo effect (-1.0 W/m²)

Boucher and Pham, GRL, 2002

0

-0.1

-0.2

-0.5

-1.5

-2

-3

- 1

Cloud lifetime effect calculations

The autoconversion rate (*precipitation formation rate in clouds with no ice*) in climate models depends on the cloud water content q_l and the number concentration of cloud droplets N:

 $Q_{aut} \sim q_l^a N^b$

with a=2-5 b=-1 to -3.3

→ more cloud droplets decrease drizzle formation

Aerosol effects on cloud water content between preindustrial and present-day times Difference in aerosol mass [mg/m2]

Indirect aerosol effect

Difference between two 5-year simulations one with pre-industrial and one with present-day aerosol emissions

[Global mean change in top-of-the-atmosphere net radiation: -1.4 W/m^2]

Peng and Lohmann, GRL, 2003

Semi-direct effect

Ackerman et al., Science, 2000

Semi-direct effect

Change in liquid water path with black carbon for the experiments **DIRECT, INDIRECT** and ALL

Lohmann and Feichter, GRL, 2001

Global mean indirect aerosol effect (Twomey vs. lifetime) from different climate models

Sulfate Soot (BC) and sulfate **Organic** aerosols (OC) and sulfate BC, OC and sulfate

Lohmann and Feichter, ACP, 2005

Summary

- Aerosol effects on the radiative balance are significant. At the top-of-the atmosphere, the cooling effect from sulfate and organic aerosols is partly offset by the warming by black carbon.
- All aerosols cause a reduction of solar radiation at the Earth surface.
- In addition aerosols significantly influence air quality and the hydrological cycle.
- We will know more about each individual aerosol species, including their effects on ice clouds, by the time the Forth IPCC Assessment report is published.